Electrical and Electronic Engineering - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Adversarial Robustness in High-Dimensional Deep Learning
    Karanikas, Gregory Jeremiah ( 2021)
    As applications of deep learning continue to be discovered and implemented, the problem of robustness becomes increasingly important. It is well established that deep learning models have a serious vulnerability against adversarial attacks. Malicious attackers targeting learning models can generate so-called "adversarial examples'' that are able to deceive the models. These adversarial examples can be generated from real data by adding small perturbations in specific directions. This thesis focuses on the problem of explaining vulnerability (of neural networks) to adversarial examples, an open problem which has been addressed from various angles in the literature. The problem is approached geometrically, by considering adversarial examples as points which lie close to the decision boundary in a high-dimensional feature space. By invoking results from high-dimensional geometry, it is argued that adversarial robustness is impacted by high data dimensionality. Specifically, an upper bound on robustness which decreases with dimension is derived, subject to a few mathematical assumptions. To test this idea that adversarial robustness is affected by dimensionality, we perform experiments where robustness metrics are compared after training neural network classifiers on various dimension-reduced datasets. We use MNIST and two cognitive radio datasets for our experiments, and we compute the attack-based empirical robustness and attack-agnostic CLEVER score, both of which are approximations of true robustness. These experiments show correlations between adversarial robustness and dimension in certain cases.
  • Item
    Thumbnail Image
    Impact of Rooftop Solar on Distribution Network Planning
    Gupta, Ashish Bert ( 2019)
    Electricity networks have been undergoing significant transformation recently, especially in terms of embedded generation. There has been a lot of focus on demand fluctuations from solar and wind farms that are being connected onto high voltage (HV) grids in energy markets. But the distribution low voltage (LV) grid may prove the most challenging for the network owners and market operators. This is because rooftop solar, whether installed in commercial or residential areas, is leading to high demand fluctuations within the last mile. Customer-installed solar is also causing voltages to rise, but it is the Distribution Network Operator (DNO) on which the responsibility of voltage regulation falls. There is hence greater importance for the DNO to have full visibility of the LV feeder voltages at all times, accurately analysing proposed connections, and meeting the regulators’ and government expectations of enabling solar penetration. Voltage monitoring and regulating infrastructure at the LV level, though, is expensive to implement and hence scarce due to its huge scale. Utilities hence employ empirical or statistical techniques to calculate voltage drop and voltage rise. Conservative allowances for demand diversity and unbalance can lead to erroneous results and can form the basis of considerable utility capital expenditure programs. Utility expenditure in turn usually leads to an increase in customer bills over time. A small number of utilities in the world have access to voltage data from smart metering infrastructures, such as in Victoria, Australia, but ownership of data is becoming an open question. Data availability also presents a different problem to them, as these meters are leading to an extraordinary amount of near real-time data, which they are failing to fully embrace. They see smart-technology driven initiatives as a form of disruption and are slow or unwilling to adapt to the changing nature of the grid. This dissertation details the use of data analytics for forecasting future voltages on the network. Standard machine learning techniques are used to create a non-linear regression model fit to train parameters that reflect the operational status of the feeder. These parameters reflect load diversity and unbalance as well as generator diversity and unbalance. The trained model consequently accurately predicts voltages on the feeder with additional connections. A load-flow simulation of a real-world network is carried out. Training and testing are performed on data from different halves of the year. Predicted voltages are compared to simulation results to confirm the high accuracy, even though consumption patterns and solar irradiation patterns change due to different seasons in the test data. Hence, by leveraging interval metering data, it is shown how standard machine learning methods can be used to develop forecasting capabilities. The methodology developed in this thesis can used as a planning tool to quickly and accurately evaluate future rate of recurrence of voltage violations; and predict the voltage headroom available on the LV feeder. This is a significant outcome as predictability of LV feeder voltages is a concern for the utilities, consumers as well as regulating bodies. The presented method will enable more loads and PVs onto the network without the need of new assets such as distribution transformers or LV feeders, that may be left underutilised. It will also help resolve certain quality of supply issues such as voltage drop complaints; and help better prioritise and technically analyse constrained areas of the network. It is clear that high-quality, high-volume data analysis will play a key role in resolving the needs of the electricity industry. This thesis serves as an interface between network planning engineers and data scientists who will solve the emerging energy constraints, play a part in minimising customer energy prices and assist in the transition to decentralised clean energy sources.