Office of The Vice-Chancellor - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 113
  • Item
    No Preview Available
    Molecular insights into metabolite antigen recognition by mucosal-associated invariant T cells
    Awad, W ; Ciacchi, L ; McCluskey, J ; Fairlie, DP ; Rossjohn, J (CURRENT BIOLOGY LTD, 2023-08)
    Metabolite-based T-cell immunity is emerging as a major player in antimicrobial immunity, autoimmunity, and cancer. Here, small-molecule metabolites were identified to be captured and presented by the major histocompatibility complex class-I-related molecule (MR1) to T cells, namely mucosal-associated invariant T cells (MAIT) and diverse MR1-restricted T cells. Both MR1 and MAIT are evolutionarily conserved in many mammals, suggesting important roles in host immunity. Rational chemical modifications of these naturally occurring metabolites, termed altered metabolite ligands (AMLs), have advanced our understanding of the molecular correlates of MAIT T cell receptor (TCR)-MR1 recognition. This review provides a generalized framework for metabolite recognition and modulation of MAIT cells.
  • Item
    No Preview Available
    Voluptuous, complex, and full-bodied: Metaphor translation in the world of wine
    Creed, A ; Dorst, L (International Association of Researching and Applying Metaphor, 2023)
    In this practical two-hour workshop, we present a theoretical, methodological, and gastronomic introduction to metaphor translation. The knowledge domain of wine and the genre of wine reviews, also referred to as tasting notes, will provide the platform to: • demonstrate the potential for metaphor, both conventional and creative, to shape and transform peoples sensory and emotional responses to wine; and • investigate the crucial role translation plays in providing linguistic and cultural mediation that ensures an accurate and consistent interpretation and appreciation of wine across different languages and cultures. The workshop is organised as follows: 1. an introduction to wine reviews and tasting notes > tasting, experiencing, and describing wine; 2. an introduction to metaphor identification and analysis, using methods such as MIP (Pragglejaz Group, 2007) and multilingual MIPVU (Steen et al., 2010; Nacey et al., 2019), and reflecting on notions such as conventionality and creativity > analysing metaphor in wine reviews; and, 3. an introduction to metaphor translation, using the models proposed by Newmark (1988) and Schäffner (2004), and reflecting on notions such as cultural appropriateness and stereotyping > translating metaphor in wine reviews. Participants will be introduced to the process of wine appreciation—yes, you will be tasting wine—and develop a basic understanding of as well as basic skills in performing metaphor analysis and translation in wine reviews. We will do hands-on work with sample texts in different languages. Working in collaborative teams, participants will taste, write, and translate their own wine reviews. The workshop will culminate in a prize for the voted best lightning wine review.
  • Item
    No Preview Available
    Installing Elements part 2
    Kolker, M ; Kolker, M (Symplectic, 2019)
  • Item
    Thumbnail Image
    Mobility of antimicrobial resistance across serovars and disease presentations in non-typhoidal Salmonella from animals and humans in Vietnam
    Bloomfield, S ; Vu, TD ; Ha, TT ; Campbell, J ; Thomson, NR ; Parkhill, J ; Hoang, LP ; Tran, THC ; Maskell, DJ ; Perron, GG ; Nguyen, MN ; Lu, LV ; Adriaenssens, EM ; Baker, S ; Mather, AE (MICROBIOLOGY SOC, 2022-05)
    Non-typhoidal Salmonella (NTS) is a major cause of bacterial enterocolitis globally but also causes invasive bloodstream infections. Antimicrobial resistance (AMR) hampers the treatment of these infections and understanding how AMR spreads between NTS may help in developing effective strategies. We investigated NTS isolates associated with invasive disease, diarrhoeal disease and asymptomatic carriage in animals and humans from Vietnam. Isolates included multiple serovars and both common and rare phenotypic AMR profiles; long- and short-read sequencing was used to investigate the genetic mechanisms and genomic backgrounds associated with phenotypic AMR profiles. We demonstrate concordance between most AMR genotypes and phenotypes but identified large genotypic diversity in clinically relevant phenotypes and the high mobility potential of AMR genes (ARGs) in this setting. We found that 84 % of ARGs identified were located on plasmids, most commonly those containing IncHI1A_1 and IncHI1B(R27)_1_R27 replicons (33%), and those containing IncHI2_1 and IncHI2A_1 replicons (31%). The vast majority (95%) of ARGS were found within 10 kbp of IS6/IS26 elements, which provide plasmids with a mechanism to exchange ARGs between plasmids and other parts of the genome. Whole genome sequencing with targeted long-read sequencing applied in a One Health context identified a comparatively limited number of insertion sequences and plasmid replicons associated with AMR. Therefore, in the context of NTS from Vietnam and likely for other settings as well, the mechanisms by which ARGs move contribute to a more successful AMR profile than the specific ARGs, facilitating the adaptation of bacteria to different environments or selection pressures.
  • Item
    Thumbnail Image
    Genomic variations leading to alterations in cell morphology of Campylobacter spp.
    Esson, D ; Mather, AE ; Scanlan, E ; Gupta, S ; de Vries, SPW ; Bailey, D ; Harris, SR ; McKinley, TJ ; Méric, G ; Berry, SK ; Mastroeni, P ; Sheppard, SK ; Christie, G ; Thomson, NR ; Parkhill, J ; Maskell, DJ ; Grant, AJ (Springer Science and Business Media LLC, 2016-12-02)
    Campylobacter jejuni, the most common cause of bacterial diarrhoeal disease, is normally helical. However, it can also adopt straight rod, elongated helical and coccoid forms. Studying how helical morphology is generated, and how it switches between its different forms, is an important objective for understanding this pathogen. Here, we aimed to determine the genetic factors involved in generating the helical shape of Campylobacter. A C. jejuni transposon (Tn) mutant library was screened for non-helical mutants with inconsistent results. Whole genome sequence variation and morphological trends within this Tn library, and in various C. jejuni wild type strains, were compared and correlated to detect genomic elements associated with helical and rod morphologies. All rod-shaped C. jejuni Tn mutants and all rod-shaped laboratory, clinical and environmental C. jejuni and Campylobacter coli contained genetic changes within the pgp1 or pgp2 genes, which encode peptidoglycan modifying enzymes. We therefore confirm the importance of Pgp1 and Pgp2 in the maintenance of helical shape and extended this to a wide range of C. jejuni and C. coli isolates. Genome sequence analysis revealed variation in the sequence and length of homopolymeric tracts found within these genes, providing a potential mechanism of phase variation of cell shape.
  • Item
    Thumbnail Image
    Transposon mutagenesis in Mycoplasma hyopneumoniae using a novel mariner-based system for generating random mutations.
    Maglennon, GA ; Cook, BS ; Deeney, AS ; Bossé, JT ; Peters, SE ; Langford, PR ; Maskell, DJ ; Tucker, AW ; Wren, BW ; Rycroft, AN ; BRaDP1T consortium, (Springer Science and Business Media LLC, 2013-12-21)
    Mycoplasma hyopneumoniae is the cause of enzootic pneumonia in pigs, a chronic respiratory disease associated with significant economic losses to swine producers worldwide. The molecular pathogenesis of infection is poorly understood due to the lack of genetic tools to allow manipulation of the organism and more generally for the Mycoplasma genus. The objective of this study was to develop a system for generating random transposon insertion mutants in M. hyopneumoniae that could prove a powerful tool in enabling the pathogenesis of infection to be unraveled. A novel delivery vector was constructed containing a hyperactive C9 mutant of the Himar1 transposase along with a mini transposon containing the tetracycline resistance cassette, tetM. M. hyopneumoniae strain 232 was electroporated with the construct and tetM-expressing transformants selected on agar containing tetracycline. Individual transformants contained single transposon insertions that were stable upon serial passages in broth medium. The insertion sites of 44 individual transformants were determined and confirmed disruption of several M. hyopneumoniae genes. A large pool of over 10 000 mutants was generated that should allow saturation of the M. hyopneumoniae strain 232 genome. This is the first time that transposon mutagenesis has been demonstrated in this important pathogen and could be generally applied for other Mycoplasma species that are intractable to genetic manipulation. The ability to generate random mutant libraries is a powerful tool in the further study of the pathogenesis of this important swine pathogen.
  • Item
    Thumbnail Image
    Intracellular demography and the dynamics of Salmonella enterica infections.
    Brown, SP ; Cornell, SJ ; Sheppard, M ; Grant, AJ ; Maskell, DJ ; Grenfell, BT ; Mastroeni, P ; Levin, S (Public Library of Science (PLoS), 2006-10)
    An understanding of within-host dynamics of pathogen interactions with eukaryotic cells can shape the development of effective preventive measures and drug regimes. Such investigations have been hampered by the difficulty of identifying and observing directly, within live tissues, the multiple key variables that underlay infection processes. Fluorescence microscopy data on intracellular distributions of Salmonella enterica serovar Typhimurium (S. Typhimurium) show that, while the number of infected cells increases with time, the distribution of bacteria between cells is stationary (though highly skewed). Here, we report a simple model framework for the intensity of intracellular infection that links the quasi-stationary distribution of bacteria to bacterial and cellular demography. This enables us to reject the hypothesis that the skewed distribution is generated by intrinsic cellular heterogeneities, and to derive specific predictions on the within-cell dynamics of Salmonella division and host-cell lysis. For within-cell pathogens in general, we show that within-cell dynamics have implications across pathogen dynamics, evolution, and control, and we develop novel generic guidelines for the design of antibacterial combination therapies and the management of antibiotic resistance.
  • Item
    Thumbnail Image
    Publisher Correction: Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis.
    Weinert, LA ; Chaudhuri, RR ; Wang, J ; Peters, SE ; Corander, J ; Jombart, T ; Baig, A ; Howell, KJ ; Vehkala, M ; Välimäki, N ; Harris, D ; Chieu, TTB ; Van Vinh Chau, N ; Campbell, J ; Schultsz, C ; Parkhill, J ; Bentley, SD ; Langford, PR ; Rycroft, AN ; Wren, BW ; Farrar, J ; Baker, S ; Hoa, NT ; Holden, MTG ; Tucker, AW ; Maskell, DJ ; BRaDP1T Consortium, (Springer Science and Business Media LLC, 2019-11-22)
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
  • Item
    Thumbnail Image
    Overexpression of antibiotic resistance genes in hospital effluents over time.
    Rowe, WPM ; Baker-Austin, C ; Verner-Jeffreys, DW ; Ryan, JJ ; Micallef, C ; Maskell, DJ ; Pearce, GP (Oxford University Press (OUP), 2017-06-01)
    OBJECTIVES: Effluents contain a diverse abundance of antibiotic resistance genes that augment the resistome of receiving aquatic environments. However, uncertainty remains regarding their temporal persistence, transcription and response to anthropogenic factors, such as antibiotic usage. We present a spatiotemporal study within a river catchment (River Cam, UK) that aims to determine the contribution of antibiotic resistance gene-containing effluents originating from sites of varying antibiotic usage to the receiving environment. METHODS: Gene abundance in effluents (municipal hospital and dairy farm) was compared against background samples of the receiving aquatic environment (i.e. the catchment source) to determine the resistome contribution of effluents. We used metagenomics and metatranscriptomics to correlate DNA and RNA abundance and identified differentially regulated gene transcripts. RESULTS: We found that mean antibiotic resistance gene and transcript abundances were correlated for both hospital ( ρ  = 0.9, two-tailed P  <0.0001) and farm ( ρ  = 0.5, two-tailed P   <0.0001) effluents and that two β-lactam resistance genes ( bla GES and bla OXA ) were overexpressed in all hospital effluent samples. High β-lactam resistance gene transcript abundance was related to hospital antibiotic usage over time and hospital effluents contained antibiotic residues. CONCLUSIONS: We conclude that effluents contribute high levels of antibiotic resistance genes to the aquatic environment; these genes are expressed at significant levels and are possibly related to the level of antibiotic usage at the effluent source.
  • Item
    Thumbnail Image
    Identification and initial characterisation of a protein involved in Campylobacter jejuni cell shape.
    Esson, D ; Gupta, S ; Bailey, D ; Wigley, P ; Wedley, A ; Mather, AE ; Méric, G ; Mastroeni, P ; Sheppard, SK ; Thomson, NR ; Parkhill, J ; Maskell, DJ ; Christie, G ; Grant, AJ (Elsevier BV, 2017-03)
    Campylobacter jejuni is the leading cause of bacterial food borne illness. While helical cell shape is considered important for C. jejuni pathogenesis, this bacterium is capable of adopting other morphologies. To better understand how helical-shaped C. jejuni maintain their shape and thus any associated colonisation, pathogenicity or other advantage, it is first important to identify the genes and proteins involved. So far, two peptidoglycan modifying enzymes Pgp1 and Pgp2 have been shown to be required for C. jejuni helical cell shape. We performed a visual screen of ∼2000 transposon mutants of C. jejuni for cell shape mutants. Whole genome sequence data of the mutants with altered cell shape, directed mutants, wild type stocks and isolated helical and rod-shaped 'wild type' C. jejuni, identified a number of different mutations in pgp1 and pgp2, which result in a change in helical to rod bacterial cell shape. We also identified an isolate with a loss of curvature. In this study, we have identified the genomic change in this isolate, and found that targeted deletion of the gene with the change resulted in bacteria with loss of curvature. Helical cell shape was restored by supplying the gene in trans. We examined the effect of loss of the gene on bacterial motility, adhesion and invasion of tissue culture cells and chicken colonisation, as well as the effect on the muropeptide profile of the peptidoglycan sacculus. Our work identifies another factor involved in helical cell shape.