Zoology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    No Preview Available
    A Comprehensive Atlas of the Adult Mouse Penis
    PASK, A ; Phillips, TR ; Wright, DK ; Gradie, PE ; Johnston, LA (Karger, 2015)
    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through magnetic resonance imaging data, gross morphology, and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin, as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures.
  • Item
    Thumbnail Image
    Placental expression of pituitary hormones is an ancestral feature of therian mammals
    Menzies, BR ; Pask, AJ ; Renfree, MB (BMC, 2011)
    BACKGROUND: The placenta is essential for supplying nutrients and gases to the developing mammalian young before birth. While all mammals have a functional placenta, only in therian mammals (marsupials and eutherians) does the placenta closely appose or invade the uterine endometrium. The eutherian placenta secretes hormones that are structurally and functionally similar to pituitary growth hormone (GH), prolactin (PRL) and luteinizing hormone (LH). Marsupial and eutherian mammals diverged from a common ancestor approximately 125 to 148 million years ago and developed distinct reproductive strategies. As in eutherians, marsupials rely on a short-lived but functional placenta for embryogenesis. RESULTS: We characterized pituitary GH, GH-R, IGF-2, PRL and LHβ in a macropodid marsupial, the tammar wallaby, Macropus eugenii. These genes were expressed in the tammar placenta during the last third of gestation when most fetal growth occurs and active organogenesis is initiated. The mRNA of key growth genes GH, GH-R, IGF-2 and PRL were expressed during late pregnancy. We found significant up-regulation of GH, GH-R and IGF-2 after the start of the rapid growth phase of organogenesis which suggests that the placental growth hormones regulate the rapid phase of fetal growth. CONCLUSIONS: This is the first demonstration of the existence of pituitary hormones in the marsupial placenta. Placental expression of these pituitary hormones has clearly been conserved in marsupials as in eutherian mammals, suggesting an ancestral origin of the evolution of placental expression and a critical function of these hormones in growth and development of all therian mammals.
  • Item
    Thumbnail Image
    Enhancing genome assemblies by integrating non-sequence based data.
    Heider, TN ; Lindsay, J ; Wang, C ; O'Neill, RJ ; Pask, AJ (Springer Science and Business Media LLC, 2011-05-28)
    INTRODUCTION: Many genome projects were underway before the advent of high-throughput sequencing and have thus been supported by a wealth of genome information from other technologies. Such information frequently takes the form of linkage and physical maps, both of which can provide a substantial amount of data useful in de novo sequencing projects. Furthermore, the recent abundance of genome resources enables the use of conserved synteny maps identified in related species to further enhance genome assemblies. METHODS: The tammar wallaby (Macropus eugenii) is a model marsupial mammal with a low coverage genome. However, we have access to extensive comparative maps containing over 14,000 markers constructed through the physical mapping of conserved loci, chromosome painting and comprehensive linkage maps. Using a custom Bioperl pipeline, information from the maps was aligned to assembled tammar wallaby contigs using BLAT. This data was used to construct pseudo paired-end libraries with intervals ranging from 5-10 MB. We then used Bambus (a program designed to scaffold eukaryotic genomes by ordering and orienting contigs through the use of paired-end data) to scaffold our libraries. To determine how map data compares to sequence based approaches to enhance assemblies, we repeated the experiment using a 0.5× coverage of unique reads from 4 KB and 8 KB Illumina paired-end libraries. Finally, we combined both the sequence and non-sequence-based data to determine how a combined approach could further enhance the quality of the low coverage de novo reconstruction of the tammar wallaby genome. RESULTS: Using the map data alone, we were able order 2.2% of the initial contigs into scaffolds, and increase the N50 scaffold size to 39 KB (36 KB in the original assembly). Using only the 0.5× paired-end sequence based data, 53% of the initial contigs were assigned to scaffolds. Combining both data sets resulted in a further 2% increase in the number of initial contigs integrated into a scaffold (55% total) but a 35% increase in N50 scaffold size over the use of sequence-based data alone. CONCLUSIONS: We provide a relatively simple pipeline utilizing existing bioinformatics tools to integrate map data into a genome assembly which is available at http://www.mcb.uconn.edu/fac.php?name=paska. While the map data only contributed minimally to assigning the initial contigs to scaffolds in the new assembly, it greatly increased the N50 size. This process added structure to our low coverage assembly, greatly increasing its utility in further analyses.
  • Item
    Thumbnail Image
    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development
    Renfree, MB ; Papenfuss, AT ; Deakin, JE ; Lindsay, J ; Heider, T ; Belov, K ; Rens, W ; Waters, PD ; Pharo, EA ; Shaw, G ; Swwong, E ; Lefevre, CM ; Nicholas, KR ; Kuroki, Y ; Wakefield, MJ ; Zenger, KR ; Wang, C ; Ferguson-Smith, M ; Nicholas, FW ; Hickford, D ; Yu, H ; Short, KR ; Siddle, HV ; Frankenberg, SR ; Chew, KY ; Menzies, BR ; Stringer, JM ; Suzuki, S ; Hore, TA ; Delbridge, ML ; Mohammadi, A ; Schneider, NY ; Hu, Y ; O'Hara, W ; Al Nadaf, S ; Wu, C ; Feng, Z-P ; Cocks, BG ; Wang, J ; Flicek, P ; Searle, SMJ ; Fairley, S ; Beal, K ; Herrero, J ; Carone, DM ; Suzuki, Y ; Sugano, S ; Toyoda, A ; Sakaki, Y ; Kondo, S ; Nishida, Y ; Tatsumoto, S ; Mandiou, I ; Hsu, A ; McColl, KA ; Lansdell, B ; Weinstock, G ; Kuczek, E ; McGrath, A ; Wilson, P ; Men, A ; Hazar-Rethinam, M ; Hall, A ; Davis, J ; Wood, D ; Williams, S ; Sundaravadanam, Y ; Muzny, DM ; Jhangiani, SN ; Lewis, LR ; Morgan, MB ; Okwuonu, GO ; Ruiz, SJ ; Santibanez, J ; Nazareth, L ; Cree, A ; Fowler, G ; Kovar, CL ; Dinh, HH ; Joshi, V ; Jing, C ; Lara, F ; Thornton, R ; Chen, L ; Deng, J ; Liu, Y ; Shen, JY ; Song, X-Z ; Edson, J ; Troon, C ; Thomas, D ; Stephens, A ; Yapa, L ; Levchenko, T ; Gibbs, RA ; Cooper, DW ; Speed, TP ; Fujiyama, A ; Graves, JAM ; O'Neill, RJ ; Pask, AJ ; Forrest, SM ; Worley, KC (BMC, 2011)
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution.