Zoology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 38
  • Item
    Thumbnail Image
    Host shift capability of a specialist seed predator of an invasive plant: Roles of competition, population genetics and plant chemistry
    Tuda, M ; Wu, LH ; Yamada, N ; Wang, CP ; Wu, WJ ; Buranapanichpan, S ; Kagoshima, K ; Chen, ZQ ; Teramoto, KK ; Kumashiro, BR ; Heu, R (Springer Science and Business Media LLC, 2014-02-01)
  • Item
    Thumbnail Image
    New Bone Formation and Microstructure Assessed by Combination of Confocal Laser Scanning Microscopy and Differential Interference Contrast Microscopy
    Yang, X ; Qin, L ; Liang, W ; Wang, W ; Tan, J ; Liang, P ; Xu, J ; Li, S ; Cui, S (SPRINGER, 2014-03)
    Bone is a mineralized connective tissue that is continuously and microstructurally remodeled. Altered bone formation and microstructure arise in pathological bone conditions such as osteoporosis, osteonecrosis, fracture repair, and Paget disease of bone. A proper and objective assessment of bone formation and microstructure will provide insight into the understanding of bone pathogenesis and remodeling. Here, new bone formation ex vitro and its microstructure were evaluated in in vivo multiple sequential polychrome-labeled samples using confocal laser scanning microscopy (CLSM), which generated clearer and more reliable images of thick bone sections than conventional fluorescence microscopy (CFM). Intriguingly, fine details of the bone microstructural features, including the mineralization fronts, quiescent versus active osteons, and Volkmann's channel, were elucidated using CLSM, which defines the relationship between morphological changes and function, when combined with differential interference contrast microscopy. Furthermore, CLSM provided objective evaluations of bone formation, such as the ratio of labeled areas of new bone formation in a rabbit model when compared with CFM. Altogether, new bone formation and its microstructure can be evaluated more adequately using a combination of CLSM and DIC microscopies.
  • Item
    Thumbnail Image
    An Introduced Competitor Elevates Corticosterone Responses of a Native Lizard (Varanus varius)
    Jessop, TS ; Anson, JR ; Narayan, E ; Lockwood, T (UNIV CHICAGO PRESS, 2015)
    Glucocorticoid hormone profiles are increasingly used as physiological markers to infer the strength of species interactions that can influence fitness and ensuing population dynamics of animals. Here we investigated two aims. First, we measured the effect of a 90-min capture stress protocol on the plasma corticosterone responses of a large native Australian lizard, the lace monitor (Varanus varius). Second, we compared the basal and postcapture stress corticosterone responses of lace monitors in habitats where they were exposed to high or low densities of the European red fox (Vulpes vulpes), an introduced competitor. Lace monitors responded to the capture stress protocol by significantly increasing plasma levels of corticosterone above basal at 45- and 90-min-postcapture blood-sampling intervals. In habitats with high fox densities, lace monitors produced a significantly greater basal and capture-stress-induced corticosterone response compared to individuals in low-fox density habitat. A significant interaction among fox density, time postcapture, and body condition was also found to influence plasma corticosterone values. These results suggest competition with red fox, perhaps via nutritional stress and increased hypersensitivity of the adrenocortical axis in lizards. At present, without further research, we do not understand whether such responses mediate lizard fitness or whether they have adaptive or maladaptive consequences for lizard populations in response to red fox competition. Nevertheless, our results help broaden understanding of the physiological implications arising from species interactions and specifically how introduced competitors could mediate diverse impacts on native biodiversity.
  • Item
    Thumbnail Image
    A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture
    Umina, PA ; Jenkins, S ; McColl, S ; Arthur, A ; Hoffmann, AA (MDPI, 2015-12)
    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels.
  • Item
    Thumbnail Image
    Low female birth weight and advanced maternal age programme alterations in next-generation blastocyst development
    Master, JS ; Thouas, GA ; Harvey, AJ ; Sheedy, JR ; Hannan, NJ ; Gardner, DK ; Wlodek, ME (BIOSCIENTIFICA LTD, 2015-05)
    Low birth weight is associated with an increased risk for adult disease development with recent studies highlighting transmission to subsequent generations. However, the mechanisms and timing of programming of disease transmission to the next generation remain unknown. The aim of this study was to examine the effects of low birth weight and advanced maternal age on second-generation preimplantation blastocysts. Uteroplacental insufficiency or sham surgery was performed in late-gestation WKY pregnant rats, giving rise to first-generation (F1) restricted (born small) and control offspring respectively. F1 control and restricted females, at 4 or 12 months of age, were naturally mated with normal males. Second-generation (F2) blastocysts from restricted females displayed reduced expression of genes related to growth compared with F2 control (P<0.05). Following 24 h culture, F2 restricted blastocysts had accelerated development, with increased total cell number, a result of increased trophectoderm cells compared with control (P<0.05). There were alterations in carbohydrate and serine utilisation in F2 restricted blastocysts and F2 restricted outgrowths from 4-month-old females respectively (P<0.05). F2 blastocysts from aged restricted females were developmentally delayed at retrieval, with reduced total cell number attributable to reduced trophectoderm number with changes in carbohydrate utilisation (P<0.05). Advanced maternal age resulted in alterations in a number of amino acids in media obtained from F2 blastocyst outgrowths (P<0.05). These findings demonstrate that growth restriction and advanced maternal age can alter F2 preimplantation embryo physiology and the subsequent offspring growth.
  • Item
    Thumbnail Image
    Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants
    Ossola, A ; Nash, MA ; Christie, FJ ; Hahs, AK ; Livesley, SJ (PEERJ INC, 2015-10-22)
    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size.
  • Item
    Thumbnail Image
    Females Choose Mates Based on Genetic Relatedness in a Small Dasyurid Marsupial, the Agile Antechinus (Antechinus agilis)
    Parrott, ML ; Ward, SJ ; Temple-Smith, PD ; Selwood, L ; Zane, L (PUBLIC LIBRARY SCIENCE, 2015-04-29)
    Females in a variety of taxa mate with more than one male during a single oestrus and exhibit mate preferences for genetically compatible males, but the influence of female mate choice on siring success is not clearly understood. Whether females choose to mate with more than one male or endure forced copulations is also often unknown. Here, we examined the effects of genetic relatedness on female mate choice and siring success in a small semelparous carnivorous marsupial, the agile antechinus (Antechinus agilis), during two consecutive breeding seasons. Experimental trials were conducted in captivity over periods of 72 hours using interconnected enclosures in which female antechinus could choose to access any of four separated males, but males were only able to access females that entered their quarters. Females had access to two genetically similar and two genetically dissimilar males simultaneously and all behavioural interactions were observed and scored from continuous video recordings. Genetic similarity between mates and paternity of young was determined by microsatellite analyses. Some females chose to enter and mate with more than one male during a single oestrus period. Although females investigated all males, they spent significantly more time visiting, and mated more times with, genetically dissimilar males. Males that were genetically dissimilar to the female sired 88% of subsequent offspring. Whilst males mated readily with most females, they rejected the advances of some receptive females, indicating a previously unexpected level of male mate choice. The results show that genetic relatedness between mates has a significant influence on mate choice, breeding and siring success in the agile antechinus.
  • Item
    Thumbnail Image
    Constant illumination reduces circulating melatonin and impairs immune function in the cricket Teleogryllus commodus
    Durrant, J ; Michaelides, EB ; Rupasinghe, T ; Tull, D ; Green, MP ; Jones, TM (PEERJ INC, 2015-07-16)
    Exposure to constant light has a range of negative effects on behaviour and physiology, including reduced immune function in both vertebrates and invertebrates. It is proposed that the associated suppression of melatonin (a ubiquitous hormone and powerful antioxidant) in response to the presence of light at night could be an underlying mechanistic link driving the changes to immune function. Here, we investigated the relationship between constant illumination, melatonin and immune function, using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. Crickets were reared under either a 12 h light: 12 h dark regimen or a constant 24 h light regimen. Circulating melatonin concentration and immune function (haemocyte concentration, lytic activity and phenoloxidase (PO) activity) were assessed in individual adult crickets through the analysis of haemolymph. Constant illumination reduced melatonin and had a negative impact on haemocyte concentrations and lytic activity, but its effect on PO activity was less apparent. Our data provide the first evidence, to our knowledge, of a link between exposure to constant illumination and variation in haemocyte concentration in an invertebrate model, while also highlighting the potential complexity of the immune response following exposure to constant illumination. This study provides insight into the possible negative effect of artificial night-time lighting on the physiology of invertebrates, but whether lower and potentially more ecologically relevant levels of light at night produce comparable results, as has been reported in several vertebrate taxa, remains to be tested.
  • Item
    Thumbnail Image
    Chemoreception and mating behaviour of a tropical Australian skink
    Scott, ML ; Llewelyn, J ; Higgie, M ; Hoskin, CJ ; Pike, K ; Phillips, BL (SPRINGER HEIDELBERG, 2015-10)
  • Item
    No Preview Available
    A Comprehensive Atlas of the Adult Mouse Penis
    PASK, A ; Phillips, TR ; Wright, DK ; Gradie, PE ; Johnston, LA (Karger, 2015)
    Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through magnetic resonance imaging data, gross morphology, and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin, as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures.