Clinical Pathology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 42
  • Item
    Thumbnail Image
    Genetic risk impacts the association of menopausal hormone therapy with colorectal cancer risk
    Tian, Y ; Lin, Y ; Qu, C ; Arndt, V ; Baurley, JW ; Berndt, SI ; Bien, SA ; Bishop, DT ; Brenner, H ; Buchanan, DD ; Budiarto, A ; Campbell, PT ; Carreras-Torres, R ; Casey, G ; Chan, AT ; Chen, R ; Chen, X ; Conti, DV ; Diez-Obrero, V ; Dimou, N ; Drew, DA ; Figueiredo, JC ; Gallinger, S ; Giles, GG ; Gruber, SB ; Gunter, MJ ; Harlid, S ; Harrison, TA ; Hidaka, A ; Hoffmeister, M ; Huyghe, JR ; Jenkins, MA ; Jordahl, KM ; Joshi, AD ; Keku, TO ; Kawaguchi, E ; Kim, AE ; Kundaje, A ; Larsson, SC ; Marchand, LL ; Lewinger, JP ; Li, L ; Moreno, V ; Morrison, J ; Murphy, N ; Nan, H ; Nassir, R ; Newcomb, PA ; Obon-Santacana, M ; Ogino, S ; Ose, J ; Pardamean, B ; Pellatt, AJ ; Peoples, AR ; Platz, EA ; Potter, JD ; Prentice, RL ; Rennert, G ; Ruiz-Narvaez, EA ; Sakoda, LC ; Schoen, RE ; Shcherbina, A ; Stern, MC ; Su, Y-R ; Thibodeau, SN ; Thomas, DC ; Tsilidis, KK ; van Duijnhoven, FJB ; Van Guelpen, B ; Visvanathan, K ; White, E ; Wolk, A ; Woods, MO ; Wu, AH ; Peters, U ; Gauderman, WJ ; Hsu, L ; Chang-Claude, J (SPRINGERNATURE, 2024-06-01)
    BACKGROUND: Menopausal hormone therapy (MHT), a common treatment to relieve symptoms of menopause, is associated with a lower risk of colorectal cancer (CRC). To inform CRC risk prediction and MHT risk-benefit assessment, we aimed to evaluate the joint association of a polygenic risk score (PRS) for CRC and MHT on CRC risk. METHODS: We used data from 28,486 postmenopausal women (11,519 cases and 16,967 controls) of European descent. A PRS based on 141 CRC-associated genetic variants was modeled as a categorical variable in quartiles. Multiplicative interaction between PRS and MHT use was evaluated using logistic regression. Additive interaction was measured using the relative excess risk due to interaction (RERI). 30-year cumulative risks of CRC for 50-year-old women according to MHT use and PRS were calculated. RESULTS: The reduction in odds ratios by MHT use was larger in women within the highest quartile of PRS compared to that in women within the lowest quartile of PRS (p-value = 2.7 × 10-8). At the highest quartile of PRS, the 30-year CRC risk was statistically significantly lower for women taking any MHT than for women not taking any MHT, 3.7% (3.3%-4.0%) vs 6.1% (5.7%-6.5%) (difference 2.4%, P-value = 1.83 × 10-14); these differences were also statistically significant but smaller in magnitude in the lowest PRS quartile, 1.6% (1.4%-1.8%) vs 2.2% (1.9%-2.4%) (difference 0.6%, P-value = 1.01 × 10-3), indicating 4 times greater reduction in absolute risk associated with any MHT use in the highest compared to the lowest quartile of genetic CRC risk. CONCLUSIONS: MHT use has a greater impact on the reduction of CRC risk for women at higher genetic risk. These findings have implications for the development of risk prediction models for CRC and potentially for the consideration of genetic information in the risk-benefit assessment of MHT use.
  • Item
    Thumbnail Image
    Breast and bowel cancers diagnosed in people 'too young to have cancer': A blueprint for research using family and twin studies
    Hopper, JL ; Li, S ; MacInnis, RJ ; Dowty, JG ; Nguyen, TL ; Bui, M ; Dite, GS ; Esser, VFC ; Ye, Z ; Makalic, E ; Schmidt, DF ; Goudey, B ; Alpen, K ; Kapuscinski, M ; Win, AK ; Dugue, P-A ; Milne, RL ; Jayasekara, H ; Brooks, JD ; Malta, S ; Calais-Ferreira, L ; Campbell, AC ; Young, JT ; Nguyen-Dumont, T ; Sung, J ; Giles, GG ; Buchanan, D ; Winship, I ; Terry, MB ; Southey, MC ; Jenkins, MA (WILEY, 2024-03-19)
    Young breast and bowel cancers (e.g., those diagnosed before age 40 or 50 years) have far greater morbidity and mortality in terms of years of life lost, and are increasing in incidence, but have been less studied. For breast and bowel cancers, the familial relative risks, and therefore the familial variances in age-specific log(incidence), are much greater at younger ages, but little of these familial variances has been explained. Studies of families and twins can address questions not easily answered by studies of unrelated individuals alone. We describe existing and emerging family and twin data that can provide special opportunities for discovery. We present designs and statistical analyses, including novel ideas such as the VALID (Variance in Age-specific Log Incidence Decomposition) model for causes of variation in risk, the DEPTH (DEPendency of association on the number of Top Hits) and other approaches to analyse genome-wide association study data, and the within-pair, ICE FALCON (Inference about Causation from Examining FAmiliaL CONfounding) and ICE CRISTAL (Inference about Causation from Examining Changes in Regression coefficients and Innovative STatistical AnaLysis) approaches to causation and familial confounding. Example applications to breast and colorectal cancer are presented. Motivated by the availability of the resources of the Breast and Colon Cancer Family Registries, we also present some ideas for future studies that could be applied to, and compared with, cancers diagnosed at older ages and address the challenges posed by young breast and bowel cancers.
  • Item
    No Preview Available
    Using DEPendency of Association on the Number of Top Hits (DEPTH) as a Complementary Tool to Identify Novel Colorectal Cancer Loci
    Lai, J ; Wong, CK ; Schmidt, DF ; Kapuscinski, MK ; Alpen, K ; Macinnis, RJ ; Buchanan, DD ; Win, AK ; Figueiredo, JC ; Chan, AT ; Harrison, TA ; Hoffmeister, M ; White, E ; Le Marchand, L ; Pai, RK ; Peters, U ; Hopper, JL ; Jenkins, MA ; Makalic, E (AMER ASSOC CANCER RESEARCH, 2023-09)
    BACKGROUND: DEPendency of association on the number of Top Hits (DEPTH) is an approach to identify candidate susceptibility regions by considering the risk signals from overlapping groups of sequential variants across the genome. METHODS: We applied a DEPTH analysis using a sliding window of 200 SNPs to colorectal cancer data from the Colon Cancer Family Registry (CCFR; 5,735 cases and 3,688 controls), and Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO; 8,865 cases and 10,285 controls) studies. A DEPTH score > 1 was used to identify candidate susceptibility regions common to both analyses. We compared DEPTH results against those from conventional genome-wide association study (GWAS) analyses of these two studies as well as against 132 published susceptibility regions. RESULTS: Initial DEPTH analysis revealed 2,622 (CCFR) and 3,686 (GECCO) candidate susceptibility regions, of which 569 were common to both studies. Bootstrapping revealed 40 and 49 candidate susceptibility regions in the CCFR and GECCO data sets, respectively. Notably, DEPTH identified at least 82 regions that would not be detected using conventional GWAS methods, nor had they been identified by previous colorectal cancer GWASs. We found four reproducible candidate susceptibility regions (2q22.2, 2q33.1, 6p21.32, 13q14.3). The highest DEPTH scores were in the human leukocyte antigen locus at 6p21 where the strongest associated SNPs were rs762216297, rs149490268, rs114741460, and rs199707618 for the CCFR data, and rs9270761 for the GECCO data. CONCLUSIONS: DEPTH can identify candidate susceptibility regions for colorectal cancer not identified using conventional analyses of larger datasets. IMPACT: DEPTH has potential as a powerful complementary tool to conventional GWAS analyses for discovering susceptibility regions within the genome.
  • Item
    Thumbnail Image
    Inherited BRCA1 and RNF43 pathogenic variants in a familial colorectal cancer type X family
    Chan, JM ; Clendenning, M ; Joseland, S ; Georgeson, P ; Mahmood, K ; Joo, JE ; Walker, R ; Como, J ; Preston, S ; Chai, SM ; Chu, YL ; Meyers, AL ; Pope, BJ ; Duggan, D ; Fink, JL ; Macrae, FA ; Rosty, C ; Winship, IM ; Jenkins, MA ; Buchanan, DD (Springer, 2024-03)
    Genetic susceptibility to familial colorectal cancer (CRC), including for individuals classified as Familial Colorectal Cancer Type X (FCCTX), remains poorly understood. We describe a multi-generation CRC-affected family segregating pathogenic variants in both BRCA1, a gene associated with breast and ovarian cancer and RNF43, a gene associated with Serrated Polyposis Syndrome (SPS). A single family out of 105 families meeting the criteria for FCCTX (Amsterdam I family history criteria with mismatch repair (MMR)-proficient CRCs) recruited to the Australasian Colorectal Cancer Family Registry (ACCFR; 1998–2008) that underwent whole exome sequencing (WES), was selected for further testing. CRC and polyp tissue from four carriers were molecularly characterized including a single CRC that underwent WES to determine tumor mutational signatures and loss of heterozygosity (LOH) events. Ten carriers of a germline pathogenic variant BRCA1:c.2681_2682delAA p.Lys894ThrfsTer8 and eight carriers of a germline pathogenic variant RNF43:c.988 C > T p.Arg330Ter were identified in this family. Seven members carried both variants, four of which developed CRC. A single carrier of the RNF43 variant met the 2019 World Health Organization (WHO2019) criteria for SPS, developing a BRAF p.V600 wildtype CRC. Loss of the wildtype allele for both BRCA1 and RNF43 variants was observed in three CRC tumors while a LOH event across chromosome 17q encompassing both genes was observed in a CRC. Tumor mutational signature analysis identified the homologous recombination deficiency (HRD)-associated COSMIC signatures SBS3 and ID6 in a CRC for a carrier of both variants. Our findings show digenic inheritance of pathogenic variants in BRCA1 and RNF43 segregating with CRC in a FCCTX family. LOH and evidence of BRCA1-associated HRD supports the importance of both these tumor suppressor genes in CRC tumorigenesis.
  • Item
    Thumbnail Image
    Body size and risk of colorectal cancer molecular defined subtypes and pathways: Mendelian randomization analyses
    Papadimitriou, N ; Qu, C ; Harrison, TA ; Bever, AM ; Martin, RM ; Tsilidis, KK ; Newcomb, PA ; Thibadeau, SN ; Newton, CC ; Um, CY ; Obon-Santacana, M ; Moreno, V ; Brenner, H ; Mandic, M ; Chang-Claude, J ; Hoffmeister, M ; Pellatt, AJ ; Schoen, RE ; Harlid, S ; Ogino, S ; Ugai, T ; Buchanan, DD ; Lynch, BM ; Gruber, SB ; Cao, Y ; Hsu, L ; Huyghe, JR ; Lin, Y ; Steinfelder, RS ; Sun, W ; Van Guelpen, B ; Zaidi, SH ; Toland, AE ; Berndt, SI ; Huang, W-Y ; Aglago, EK ; Drew, DA ; French, AJ ; Georgeson, P ; Giannakis, M ; Hullar, M ; Nowak, JA ; Thomas, CE ; LeMarchand, L ; Cheng, I ; Gallinger, S ; Jenkins, MA ; Gunter, MJ ; Campbell, PT ; Peters, U ; Song, M ; Phipps, AI ; Murphya, N (ELSEVIER, 2024-03)
    BACKGROUND: Obesity has been positively associated with most molecular subtypes of colorectal cancer (CRC); however, the magnitude and the causality of these associations is uncertain. METHODS: We used Mendelian randomization (MR) to examine potential causal relationships between body size traits (body mass index [BMI], waist circumference, and body fat percentage) with risks of Jass classification types and individual subtypes of CRC (microsatellite instability [MSI] status, CpG island methylator phenotype [CIMP] status, BRAF and KRAS mutations). Summary data on tumour markers were obtained from two genetic consortia (CCFR, GECCO). FINDINGS: A 1-standard deviation (SD:5.1 kg/m2) increment in BMI levels was found to increase risks of Jass type 1MSI-high,CIMP-high,BRAF-mutated,KRAS-wildtype (odds ratio [OR]: 2.14, 95% confidence interval [CI]: 1.46, 3.13; p-value = 9 × 10-5) and Jass type 2non-MSI-high,CIMP-high,BRAF-mutated,KRAS-wildtype CRC (OR: 2.20, 95% CI: 1.26, 3.86; p-value = 0.005). The magnitude of these associations was stronger compared with Jass type 4non-MSI-high,CIMP-low/negative,BRAF-wildtype,KRAS-wildtype CRC (p-differences: 0.03 and 0.04, respectively). A 1-SD (SD:13.4 cm) increment in waist circumference increased risk of Jass type 3non-MSI-high,CIMP-low/negative,BRAF-wildtype,KRAS-mutated (OR 1.73, 95% CI: 1.34, 2.25; p-value = 9 × 10-5) that was stronger compared with Jass type 4 CRC (p-difference: 0.03). A higher body fat percentage (SD:8.5%) increased risk of Jass type 1 CRC (OR: 2.59, 95% CI: 1.49, 4.48; p-value = 0.001), which was greater than Jass type 4 CRC (p-difference: 0.03). INTERPRETATION: Body size was more strongly linked to the serrated (Jass types 1 and 2) and alternate (Jass type 3) pathways of colorectal carcinogenesis in comparison to the traditional pathway (Jass type 4). FUNDING: Cancer Research UK, National Institute for Health Research, Medical Research Council, National Institutes of Health, National Cancer Institute, American Institute for Cancer Research, Brigham and Women's Hospital, Prevent Cancer Foundation, Victorian Cancer Agency, Swedish Research Council, Swedish Cancer Society, Region Västerbotten, Knut and Alice Wallenberg Foundation, Lion's Cancer Research Foundation, Insamlingsstiftelsen, Umeå University. Full funding details are provided in acknowledgements.
  • Item
    Thumbnail Image
    Intratumoral presence of the genotoxic gut bacteria pks+ E. coli, Enterotoxigenic Bacteroides fragilis, and Fusobacterium nucleatum and their association with clinicopathological and molecular features of colorectal cancer
    Joo, JE ; Chu, YL ; Georgeson, P ; Walker, R ; Mahmood, K ; Clendenning, M ; Meyers, AL ; Como, J ; Joseland, S ; Preston, SG ; Diepenhorst, N ; Toner, J ; Ingle, DJ ; Sherry, NL ; Metz, A ; Lynch, BM ; Milne, RL ; Southey, MC ; Hopper, JL ; Win, AK ; Macrae, FA ; Winship, IM ; Rosty, C ; Jenkins, MA ; Buchanan, DD (Springer Nature, 2024)
    Background: This study aimed to investigate clinicopathological and molecular tumour features associated with intratumoral pks+ Escherichia coli (pks+E.coli+), pks+E.coli- (non-E.coli bacteria harbouring the pks island), Enterotoxigenic Bacteroides fragilis (ETBF) and Fusobacterium nucleatum (F. nucleatum). Methods: We screened 1697 tumour-derived DNA samples from the Australasian Colorectal Cancer Family Registry, Melbourne Collaborative Cohort Study and the ANGELS study using targeted PCR. Results: Pks+E.coli+ was associated with male sex (P < 0.01) and APC:c.835-8 A > G somatic mutation (P = 0.03). The association between pks+E.coli+ and APC:c.835-8 A > G was specific to early-onset CRCs (diagnosed<45years, P = 0.02). The APC:c.835-A > G was not associated with pks+E.coli- (P = 0.36). F. nucleatum was associated with DNA mismatch repair deficiency (MMRd), BRAF:c.1799T>A p.V600E mutation, CpG island methylator phenotype, proximal tumour location, and high levels of tumour infiltrating lymphocytes (Ps < 0.01). In the stratified analysis by MMRd subgroups, F. nucleatum was associated with Lynch syndrome, MLH1 methylated and double MMR somatic mutated MMRd subgroups (Ps < 0.01). Conclusion: Intratumoral pks+E.coli+ but not pks+E.coli- are associated with CRCs harbouring the APC:c.835-8 A > G somatic mutation, suggesting that this mutation is specifically related to DNA damage from colibactin-producing E.coli exposures. F. nucleatum was associated with both hereditary and sporadic MMRd subtypes, suggesting the MMRd tumour microenvironment is important for F. nucleatum colonisation irrespective of its cause.
  • Item
    No Preview Available
    Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries
    Fernandez-Rozadilla, C ; Timofeeva, M ; Chen, Z ; Law, P ; Thomas, M ; Bien, S ; Diez-Obrero, V ; Li, L ; Fernandez-Tajes, J ; Palles, C ; Sherwood, K ; Harris, S ; Svinti, V ; McDonnell, K ; Farrington, S ; Studd, J ; Vaughan-Shaw, P ; Shu, X-O ; Long, J ; Cai, Q ; Guo, X ; Lu, Y ; Scacheri, P ; Studd, J ; Huyghe, J ; Harrison, T ; Shibata, D ; Haiman, C ; Devall, M ; Schumacher, F ; Melas, M ; Rennert, G ; Obon-Santacana, M ; Martin-Sanchez, V ; Moratalla-Navarro, F ; Oh, JH ; Kim, J ; Jee, SH ; Jung, KJ ; Kweon, S-S ; Shin, M-H ; Shin, A ; Ahn, Y-O ; Kim, D-H ; Oze, I ; Wen, W ; Matsuo, K ; Matsuda, K ; Tanikawa, C ; Ren, Z ; Gao, Y-T ; Jia, W-H ; Potter, J ; Jenkins, M ; Win, AK ; Pai, R ; Figueiredo, J ; Haile, R ; Gallinger, S ; Woods, M ; Newcomb, P ; Shibata, D ; Cheadle, J ; Kaplan, R ; Maughan, T ; Kerr, R ; Kerr, D ; Kirac, I ; Boehm, J ; Mecklin, L-P ; Jousilahti, P ; Knekt, P ; Aaltonen, L ; Rissanen, H ; Pukkala, E ; Eriksson, J ; Cajuso, T ; Hanninen, U ; Kondelin, J ; Palin, K ; Tanskanen, T ; Renkonen-Sinisalo, L ; Zanke, B ; Mannisto, S ; Albanes, D ; Weinstein, S ; Ruiz-Narvaez, E ; Palmer, J ; Buchanan, D ; Platz, E ; Visvanathan, K ; Ulrich, C ; Siegel, E ; Brezina, S ; Gsur, A ; Campbell, P ; Chang-Claude, J ; Hoffmeister, M ; Brenner, H ; Slattery, M ; Potter, J ; Tsilidis, K ; Schulze, M ; Gunter, M ; Murphy, N ; Castells, A ; Castellvi-Bel, S ; Moreira, L ; Arndt, V ; Shcherbina, A ; Stern, M ; Pardamean, B ; Bishop, T ; Giles, G ; Southey, M ; Idos, G ; McDonnell, K ; Abu-Ful, Z ; Greenson, J ; Shulman, K ; Lejbkowicz, F ; Offit, K ; Su, Y-R ; Steinfelder, R ; Keku, T ; van Guelpen, B ; Hudson, T ; Hampel, H ; Pearlman, R ; Berndt, S ; Hayes, R ; Martinez, ME ; Thomas, S ; Corley, D ; Pharoah, P ; Larsson, S ; Yen, Y ; Lenz, H-J ; White, E ; Li, L ; Doheny, K ; Pugh, E ; Shelford, T ; Chan, A ; Cruz-Correa, M ; Lindblom, A ; Shibata, D ; Joshi, A ; Schafmayer, C ; Scacheri, P ; Kundaje, A ; Nickerson, D ; Schoen, R ; Hampe, J ; Stadler, Z ; Vodicka, P ; Vodickova, L ; Vymetalkova, V ; Papadopoulos, N ; Edlund, C ; Gauderman, W ; Thomas, D ; Shibata, D ; Toland, A ; Markowitz, S ; Kim, A ; Gruber, S ; van Duijnhoven, F ; Feskens, E ; Sakoda, L ; Gago-Dominguez, M ; Wolk, A ; Naccarati, A ; Pardini, B ; FitzGerald, L ; Lee, SC ; Ogino, S ; Bien, S ; Kooperberg, C ; Li, C ; Lin, Y ; Prentice, R ; Qu, C ; Bezieau, S ; Tangen, C ; Mardis, E ; Yamaji, T ; Sawada, N ; Iwasaki, M ; Haiman, C ; Le Marchand, L ; Wu, A ; Qu, C ; McNeil, C ; Coetzee, G ; Hayward, C ; Deary, I ; Harris, S ; Theodoratou, E ; Reid, S ; Walker, M ; Ooi, LY ; Moreno, V ; Casey, G ; Gruber, S ; Tomlinson, I ; Zheng, W ; Dunlop, M ; Houlston, R ; Peters, U (NATURE PORTFOLIO, 2023-01)
    Colorectal cancer (CRC) is a leading cause of mortality worldwide. We conducted a genome-wide association study meta-analysis of 100,204 CRC cases and 154,587 controls of European and east Asian ancestry, identifying 205 independent risk associations, of which 50 were unreported. We performed integrative genomic, transcriptomic and methylomic analyses across large bowel mucosa and other tissues. Transcriptome- and methylome-wide association studies revealed an additional 53 risk associations. We identified 155 high-confidence effector genes functionally linked to CRC risk, many of which had no previously established role in CRC. These have multiple different functions and specifically indicate that variation in normal colorectal homeostasis, proliferation, cell adhesion, migration, immunity and microbial interactions determines CRC risk. Crosstissue analyses indicated that over a third of effector genes most probably act outside the colonic mucosa. Our findings provide insights into colorectal oncogenesis and highlight potential targets across tissues for new CRC treatment and chemoprevention strategies.
  • Item
    Thumbnail Image
    DNA Mismatch Repair Gene Variant Classification: Evaluating the Utility of Somatic Mutations and Mismatch Repair Deficient Colonic Crypts and Endometrial Glands
    Walker, R ; Mahmood, K ; Como, J ; Clendenning, M ; Joo, JE ; Georgeson, P ; Joseland, S ; Preston, SG ; Pope, BJ ; Chan, JM ; Austin, R ; Bojadzieva, J ; Campbell, A ; Edwards, E ; Gleeson, M ; Goodwin, A ; Harris, MT ; Ip, E ; Kirk, J ; Mansour, J ; Fan, HM ; Nichols, C ; Pachter, N ; Ragunathan, A ; Spigelman, A ; Susman, R ; Christie, M ; Jenkins, MA ; Pai, RK ; Rosty, C ; Macrae, FA ; Winship, IM ; Buchanan, DD (MDPI, 2023-10)
    Germline pathogenic variants in the DNA mismatch repair (MMR) genes (Lynch syndrome) predispose to colorectal (CRC) and endometrial (EC) cancer. Lynch syndrome specific tumor features were evaluated for their ability to support the ACMG/InSiGHT framework in classifying variants of uncertain clinical significance (VUS) in the MMR genes. Twenty-eight CRC or EC tumors from 25 VUS carriers (6xMLH1, 9xMSH2, 6xMSH6, 4xPMS2), underwent targeted tumor sequencing for the presence of microsatellite instability/MMR-deficiency (MSI-H/dMMR) status and identification of a somatic MMR mutation (second hit). Immunohistochemical testing for the presence of dMMR crypts/glands in normal tissue was also performed. The ACMG/InSiGHT framework reclassified 7/25 (28%) VUS to likely pathogenic (LP), three (12%) to benign/likely benign, and 15 (60%) VUS remained unchanged. For the seven re-classified LP variants comprising nine tumors, tumor sequencing confirmed MSI-H/dMMR (8/9, 88.9%) and a second hit (7/9, 77.8%). Of these LP reclassified variants where normal tissue was available, the presence of a dMMR crypt/gland was found in 2/4 (50%). Furthermore, a dMMR endometrial gland in a carrier of an MSH2 exon 1-6 duplication provides further support for an upgrade of this VUS to LP. Our study confirmed that identifying these Lynch syndrome features can improve MMR variant classification, enabling optimal clinical care.
  • Item
    No Preview Available
    A Genetic Locus within the FMN1/GREM1 Gene Region Interacts with Body Mass Index in Colorectal Cancer Risk
    Aglago, EK ; Kim, A ; Lin, Y ; Qu, C ; Evangelou, M ; Ren, Y ; Morrison, J ; Albanes, D ; Arndt, V ; Barry, EL ; Baurley, JW ; Berndt, S ; Bien, SA ; Bishop, DT ; Bouras, E ; Brenner, H ; Buchanan, DD ; Budiarto, A ; Carreras-Torres, R ; Casey, G ; Cenggoro, TW ; Chen, AT ; Chang-Claude, J ; Chen, X ; Conti, D ; Devall, M ; Diez-Obrero, V ; Dimou, N ; Drew, D ; Figueiredo, JC ; Gallinger, S ; Giles, GG ; Gruber, SB ; Gsur, A ; Gunter, MJ ; Hampel, H ; Harlid, S ; Hidaka, A ; Harrison, TA ; Hoffmeister, M ; Huyghe, JR ; Jenkins, MA ; Jordahl, K ; Joshi, AD ; Kawaguchi, ES ; Keku, TO ; Kundaje, A ; Larsson, SC ; Le Marchand, L ; Lewinger, JP ; Li, L ; Lynch, BM ; Mahesworo, B ; Mandic, M ; Obon-Santacana, M ; Morento, V ; Murphy, N ; Men, H ; Nassir, R ; Newcomb, PA ; Ogino, S ; Ose, J ; Pai, RK ; Palmer, JR ; Papadimitriou, N ; Pardamean, B ; Peoples, AR ; Platz, EA ; Potter, JD ; Prentice, RL ; Rennert, G ; Ruiz-Narvaez, E ; Sakoda, LC ; Scacheri, PC ; Schmit, SL ; Schoen, RE ; Shcherbina, A ; Slattery, ML ; Stern, MC ; Su, Y-R ; Tangen, CM ; Thibodeau, SN ; Thomas, DC ; Tian, Y ; Ulrich, CM ; van Duijnhoven, FJB ; Van Guelpen, B ; Visvanathan, K ; Vodicka, P ; Wang, J ; White, E ; Wolk, A ; Woods, MO ; Wu, AH ; Zemlianskaia, N ; Hsu, L ; Gauderman, WJ ; Peters, U ; Tsilidis, KK ; Campbell, PT (AMER ASSOC CANCER RESEARCH, 2023-08-01)
    UNLABELLED: Colorectal cancer risk can be impacted by genetic, environmental, and lifestyle factors, including diet and obesity. Gene-environment interactions (G × E) can provide biological insights into the effects of obesity on colorectal cancer risk. Here, we assessed potential genome-wide G × E interactions between body mass index (BMI) and common SNPs for colorectal cancer risk using data from 36,415 colorectal cancer cases and 48,451 controls from three international colorectal cancer consortia (CCFR, CORECT, and GECCO). The G × E tests included the conventional logistic regression using multiplicative terms (one degree of freedom, 1DF test), the two-step EDGE method, and the joint 3DF test, each of which is powerful for detecting G × E interactions under specific conditions. BMI was associated with higher colorectal cancer risk. The two-step approach revealed a statistically significant G×BMI interaction located within the Formin 1/Gremlin 1 (FMN1/GREM1) gene region (rs58349661). This SNP was also identified by the 3DF test, with a suggestive statistical significance in the 1DF test. Among participants with the CC genotype of rs58349661, overweight and obesity categories were associated with higher colorectal cancer risk, whereas null associations were observed across BMI categories in those with the TT genotype. Using data from three large international consortia, this study discovered a locus in the FMN1/GREM1 gene region that interacts with BMI on the association with colorectal cancer risk. Further studies should examine the potential mechanisms through which this locus modifies the etiologic link between obesity and colorectal cancer. SIGNIFICANCE: This gene-environment interaction analysis revealed a genetic locus in FMN1/GREM1 that interacts with body mass index in colorectal cancer risk, suggesting potential implications for precision prevention strategies.
  • Item
    No Preview Available
    Elucidating the Risk of Colorectal Cancer for Variants in Hereditary Colorectal Cancer Genes
    Mahmood, K ; Thomas, M ; Qu, C ; Hsu, L ; Buchanan, DD ; Peters, U (W B SAUNDERS CO-ELSEVIER INC, 2023-10)