Clinical Pathology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 18
  • Item
    Thumbnail Image
    Body Mass Index, sex, non-steroidal anti-inflammatory drug medications, smoking and alcohol are differentially associated with World Health Organisation criteria and colorectal cancer risk in people with Serrated Polyposis Syndrome: an Australian case-control study
    Anthony, E ; Reece, JC ; Milanzi, E ; Joo, JE ; Joseland, S ; Clendenning, M ; Whelan, A ; Parry, S ; Arnold, J ; Vijay, V ; Atkinson, N ; Hopper, JL ; Win, AK ; Jenkins, MA ; Macrae, FA ; Winship, IM ; Rosty, C ; Buchanan, DD (BMC, 2022-11-26)
    OBJECTIVE: The unknown aetiology of Serrated Polyposis Syndrome (SPS) impedes risk prediction and prevention. We investigated risk factors for SPS, overall and stratified by World Health Organization (WHO)2010 clinical criteria and by colorectal cancer (CRC). METHOD: A retrospective case-control study involving a cross-sectional analysis from 350 unrelated individuals with SPS from the Genetics of Colonic Polyposis Study and 714 controls from the Australasian Colorectal Cancer Family Registry. Univariate and multivariate logistic regression modelling was used to determine the association between risk factors and SPS and risk factors associated with CRC in SPS. RESULTS: Female biological sex (odds ratio (OR)ā€‰=ā€‰4.54; 95%Confidence interval (CI)ā€‰=ā€‰2.77-7.45), increasing body mass index (BMI) at age 20ā€‰years (ORā€‰=ā€‰1.09; 95%CIā€‰=ā€‰1.04-1.13), hormone replacement therapy (ORā€‰=ā€‰0.44; 95%CIā€‰=ā€‰0.20.98), and increasing weekly folate intake (ORā€‰=ā€‰0.82; 95%CIā€‰=ā€‰0.75-0.90) were associated with SPS by multivariate analysis. Increasing weekly calcium intake (ORā€‰=ā€‰0.79; 95%CIā€‰=ā€‰0.64-0.97) and smoking >ā€‰10 cigarettes daily (ORā€‰=ā€‰0.45; 95%CIā€‰=ā€‰0.23-0.86) were associated with WHO criterion I only. The consumption of 1-100ā€‰g of alcohol per week (ORā€‰=ā€‰0.39; 95%CIā€‰=ā€‰0.18-0.83) was associated with WHO criterion III only. Smoking 1-5 cigarettes daily (ORā€‰=ā€‰2.35; 95%CIā€‰=ā€‰1.09-5.05), weekly non-steroidal anti-inflammatory drug (NSAIDs) intake (ORā€‰=ā€‰0.88; 95%CIā€‰=ā€‰0.78-0.99), and increased height (ORā€‰=ā€‰1.09; 95%ā€‰=ā€‰1.05-1.13), were associated with SPS fulfilling both WHO criteria I and III. Moreover, weekly NSAIDs intake (ORā€‰=ā€‰0.81; 95%CIā€‰=ā€‰0.67-0.98) was associated with a reduced likelihood of CRC in SPS. CONCLUSION: We identified novel risk and potential protective factors associated with SPS, some specific for certain WHO2010 criteria. Weekly use of NSAIDs may reduce the risk of CRC in people with SPS.
  • Item
    Thumbnail Image
    Colorectal cancer incidences in Lynch syndrome: a comparison of results from the prospective lynch syndrome database and the international mismatch repair consortium
    Moller, P ; Seppala, T ; Dowty, JG ; Haupt, S ; Dominguez-Valentin, M ; Sunde, L ; Bernstein, I ; Engel, C ; Aretz, S ; Nielsen, M ; Capella, G ; Evans, DG ; Burn, J ; Holinski-Feder, E ; Bertario, L ; Bonanni, B ; Lindblom, A ; Levi, Z ; Macrae, F ; Winship, I ; Plazzer, J-P ; Sijmons, R ; Laghi, L ; Della Valle, A ; Heinimann, K ; Half, E ; Lopez-Koestner, F ; Alvarez-Valenzuela, K ; Scott, RJ ; Katz, L ; Laish, I ; Vainer, E ; Vaccaro, CA ; Carraro, DM ; Gluck, N ; Abu-Freha, N ; Stakelum, A ; Kennelly, R ; Winter, D ; Rossi, BM ; Greenblatt, M ; Bohorquez, M ; Sheth, H ; Tibiletti, MG ; Lino-Silva, LS ; Horisberger, K ; Portenkirchner, C ; Nascimento, I ; Rossi, NT ; da Silva, LA ; Thomas, H ; Zarand, A ; Mecklin, J-P ; Pylvanainen, K ; Renkonen-Sinisalo, L ; Lepisto, A ; Peltomaki, P ; Therkildsen, C ; Lindberg, LJ ; Thorlacius-Ussing, O ; von Knebel Doeberitz, M ; Loeffler, M ; Rahner, N ; Steinke-Lange, V ; Schmiegel, W ; Vangala, D ; Perne, C ; Hueneburg, R ; de Vargas, AF ; Latchford, A ; Gerdes, A-M ; Backman, A-S ; Guillen-Ponce, C ; Snyder, C ; Lautrup, CK ; Amor, D ; Palmero, E ; Stoffel, E ; Duijkers, F ; Hall, MJ ; Hampel, H ; Williams, H ; Okkels, H ; Lubinski, J ; Reece, J ; Ngeow, J ; Guillem, JG ; Arnold, J ; Wadt, K ; Monahan, K ; Senter, L ; Rasmussen, LJ ; van Hest, LP ; Ricciardiello, L ; Kohonen-Corish, MRJ ; Ligtenberg, MJL ; Southey, M ; Aronson, M ; Zahary, MN ; Samadder, NJ ; Poplawski, N ; Hoogerbrugge, N ; Morrison, PJ ; James, P ; Lee, G ; Chen-Shtoyerman, R ; Ankathil, R ; Pai, R ; Ward, R ; Parry, S ; Debniak, T ; John, T ; van Overeem Hansen, T ; Caldes, T ; Yamaguchi, T ; Barca-Tierno, V ; Garre, P ; Cavestro, GM ; Weitz, J ; Redler, S ; Buettner, R ; Heuveline, V ; Hopper, JL ; Win, AK ; Lindor, N ; Gallinger, S ; Le Marchand, L ; Newcomb, PA ; Figueiredo, J ; Buchanan, DD ; Thibodeau, SN ; ten Broeke, SW ; Hovig, E ; Nakken, S ; Pineda, M ; Duenas, N ; Brunet, J ; Green, K ; Lalloo, F ; Newton, K ; Crosbie, EJ ; Mints, M ; Tjandra, D ; Neffa, F ; Esperon, P ; Kariv, R ; Rosner, G ; Pavicic, WH ; Kalfayan, P ; Torrezan, GT ; Bassaneze, T ; Martin, C ; Moslein, G ; Ahadova, A ; Kloor, M ; Sampson, JR ; Jenkins, MA (BMC, 2022-10-01)
    OBJECTIVE: To compare colorectal cancer (CRC) incidences in carriers of pathogenic variants of the MMR genes in the PLSD and IMRC cohorts, of which only the former included mandatory colonoscopy surveillance for all participants. METHODS: CRC incidences were calculated in an intervention group comprising a cohort of confirmed carriers of pathogenic or likely pathogenic variants in mismatch repair genes (path_MMR) followed prospectively by the Prospective Lynch Syndrome Database (PLSD). All had colonoscopy surveillance, with polypectomy when polyps were identified. Comparison was made with a retrospective cohort reported by the International Mismatch Repair Consortium (IMRC). This comprised confirmed and inferred path_MMR carriers who were first- or second-degree relatives of Lynch syndrome probands. RESULTS: In the PLSD, 8,153 subjects had follow-up colonoscopy surveillance for a total of 67,604 years and 578 carriers had CRC diagnosed. Average cumulative incidences of CRC in path_MLH1 carriers at 70 years of age were 52% in males and 41% in females; for path_MSH2 50% and 39%; for path_MSH6 13% and 17% and for path_PMS2 11% and 8%. In contrast, in the IMRC cohort, corresponding cumulative incidences were 40% and 27%; 34% and 23%; 16% and 8% and 7% and 6%. Comparing just the European carriers in the two series gave similar findings. Numbers in the PLSD series did not allow comparisons of carriers from other continents separately. Cumulative incidences at 25 years were < 1% in all retrospective groups. CONCLUSIONS: Prospectively observed CRC incidences (PLSD) in path_MLH1 and path_MSH2 carriers undergoing colonoscopy surveillance and polypectomy were higher than in the retrospective (IMRC) series, and were not reduced in path_MSH6 carriers. These findings were the opposite to those expected. CRC point incidence before 50 years of age was reduced in path_PMS2 carriers subjected to colonoscopy, but not significantly so.
  • Item
    Thumbnail Image
    Segregation analysis of 17,425 population-based breast cancer families: Evidence for genetic susceptibility and risk prediction
    Li, S ; MacInnis, RJ ; Lee, A ; Nguyen-Dumont, T ; Dorling, L ; Carvalho, S ; Dite, GS ; Shah, M ; Luccarini, C ; Wang, Q ; Milne, RL ; Jenkins, MA ; Giles, GG ; Dunning, AM ; Pharoah, PDP ; Southey, MC ; Easton, DF ; Hopper, JL ; Antoniou, AC (CELL PRESS, 2022-10-06)
    Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.
  • Item
    Thumbnail Image
    Genetic Aspects of Mammographic Density Measures Associated with Breast Cancer Risk
    Li, S ; Nguyen, TL ; Tu, N-D ; Dowty, JG ; Dite, GS ; Ye, Z ; Trinh, HN ; Evans, CF ; Tan, M ; Sung, J ; Jenkins, MA ; Giles, GG ; Hopper, JL ; Southey, MC (MDPI, 2022-06)
    Cumulus, Altocumulus, and Cirrocumulus are measures of mammographic density defined at increasing pixel brightness thresholds, which, when converted to mammogram risk scores (MRSs), predict breast cancer risk. Twin and family studies suggest substantial variance in the MRSs could be explained by genetic factors. For 2559 women aged 30 to 80 years (mean 54 years), we measured the MRSs from digitized film mammograms and estimated the associations of the MRSs with a 313-SNP breast cancer polygenic risk score (PRS) and 202 individual SNPs associated with breast cancer risk. The PRS was weakly positively correlated (correlation coefficients ranged 0.05āˆ’0.08; all p < 0.04) with all the MRSs except the Cumulus-white MRS based on the ā€œwhite but not bright areaā€ (correlation coefficient = 0.04; p = 0.06). After adjusting for its association with the Altocumulus MRS, the PRS was not associated with the Cumulus MRS. There were MRS associations (Bonferroni-adjusted p < 0.04) with one SNP in the ATXN1 gene and nominally with some ESR1 SNPs. Less than 1% of the variance of the MRSs is explained by the genetic markers currently known to be associated with breast cancer risk. Discovering the genetic determinants of the bright, not white, regions of the mammogram could reveal substantial new genetic causes of breast cancer.
  • Item
    Thumbnail Image
    Familial Aspects of Mammographic Density Measures Associated with Breast Cancer Risk
    Nguyen, TL ; Li, S ; Dowty, JG ; Dite, GS ; Ye, Z ; Nguyen-Dumont, T ; Trinh, HN ; Evans, CF ; Tan, M ; Sung, J ; Jenkins, MA ; Giles, GG ; Southey, MC ; Hopper, JL (MDPI, 2022-03)
    Cumulus, Cumulus-percent, Altocumulus, Cirrocumulus, and Cumulus-white are mammogram risk scores (MRSs) for breast cancer based on mammographic density defined in effect by different levels of pixel brightness and adjusted for age and body mass index. We measured these MRS from digitized film mammograms for 593 monozygotic (MZ) and 326 dizygotic (DZ) female twin pairs and 1592 of their sisters. We estimated the correlations in relatives (r) and the proportion of variance due to genetic factors (heritability) using the software FISHER and predicted the familial risk ratio (FRR) associated with each MRS. The Ļ estimates ranged from: 0.41 to 0.60 (standard error [SE] 0.02) for MZ pairs, 0.16 to 0.26 (SE 0.05) for DZ pairs, and 0.19 to 0.29 (SE 0.02) for sister pairs (including pairs of a twin and her non-twin sister), respectively. Heritability estimates were 39% to 69% under the classic twin model and 36% to 56% when allowing for shared non-genetic factors specific to MZ pairs. The FRRs were 1.08 to 1.17. These MRSs are substantially familial, due mostly to genetic factors that explain one-quarter to one-half as much of the familial aggregation of breast cancer that is explained by the current best polygenic risk score.
  • Item
    Thumbnail Image
    Tetranucleotide and Low Microsatellite Instability Are Inversely Associated with the CpG Island Methylator Phenotype in Colorectal Cancer
    Meessen, S ; Currey, N ; Jahan, Z ; Parker, HW ; Jenkins, MA ; Buchanan, DD ; Hopper, JL ; Segelov, E ; Dahlstrom, JE ; Kohonen-Corish, MRJ (MDPI, 2021-07)
    MSH3 gene or protein deficiency or loss-of-function in colorectal cancer can cause a DNA mismatch repair defect known as "elevated microsatellite alterations at selected tetranucleotide repeats" (EMAST). A high percentage of MSI-H tumors exhibit EMAST, while MSI-L is also linked with EMAST. However, the distribution of CpG island methylator phenotype (CIMP) within the EMAST spectrum is not known. Five tetranucleotide repeat and five MSI markers were used to classify 100 sporadic colorectal tumours for EMAST, MSI-H and MSI-L according to the number of unstable markers detected. Promoter methylation was determined using methylation-specific PCR for MSH3, MCC, CDKN2A (p16) and five CIMP marker genes. EMAST was found in 55% of sporadic colorectal carcinomas. Carcinomas with only one positive marker (EMAST-1/5, 26%) were associated with advanced tumour stage, increased lymph node metastasis, MSI-L and lack of CIMP-H. EMAST-2/5 (16%) carcinomas displayed some methylation but MSI was rare. Carcinomas with ā‰„3 positive EMAST markers (13%) were more likely to have a proximal colon location and be MSI-H and CIMP-H. Our study suggests that EMAST/MSI-L is a valuable prognostic and predictive marker for colorectal carcinomas that do not display the high methylation phenotype CIMP-H.
  • Item
    Thumbnail Image
    No Difference in Penetrance between Truncating and Missense/Aberrant Splicing Pathogenic Variants in MLH1 and MSH2: A Prospective Lynch Syndrome Database Study
    Dominguez-Valentin, M ; Plazzer, J-P ; Sampson, JR ; Engel, C ; Aretz, S ; Jenkins, MA ; Sunde, L ; Bernstein, I ; Capella, G ; Balaguer, F ; Macrae, F ; Winship, IM ; Thomas, H ; Evans, DG ; Burn, J ; Greenblatt, M ; Cappel, WHDVTN ; Sijmons, RH ; Nielsen, M ; Bertario, L ; Bonanni, B ; Tibiletti, MG ; Cavestro, GM ; Lindblom, A ; Della Valle, A ; Lopez-Kostner, F ; Alvarez, K ; Gluck, N ; Katz, L ; Heinimann, K ; Vaccaro, CA ; Nakken, S ; Hovig, E ; Green, K ; Lalloo, F ; Hill, J ; Vasen, HFA ; Perne, C ; Buettner, R ; Goergens, H ; Holinski-Feder, E ; Morak, M ; Holzapfel, S ; Hueneburg, R ; Doeberitz, MVK ; Loeffler, M ; Rahner, N ; Weitz, J ; Steinke-Lange, V ; Schmiegel, W ; Vangala, D ; Crosbie, EJ ; Pineda, M ; Navarro, M ; Brunet, J ; Moreira, L ; Sanchez, A ; Serra-Burriel, M ; Mints, M ; Kariv, R ; Rosner, G ; Pinero, TA ; Pavicic, WH ; Kalfayan, P ; ten Broeke, SW ; Mecklin, J-P ; Pylvanainen, K ; Renkonen-Sinisalo, L ; Lepisto, A ; Peltomaki, P ; Hopper, JL ; Win, AK ; Buchanan, DD ; Lindor, NM ; Gallinger, S ; Le Marchand, L ; Newcomb, PA ; Figueiredo, JC ; Thibodeau, SN ; Therkildsen, C ; Hansen, TVO ; Lindberg, L ; Rodland, EA ; Neffa, F ; Esperon, P ; Tjandra, D ; Moslein, G ; Seppala, TT ; Moller, P (MDPI, 2021-07)
    BACKGROUND: Lynch syndrome is the most common genetic predisposition for hereditary cancer. Carriers of pathogenic changes in mismatch repair (MMR) genes have an increased risk of developing colorectal (CRC), endometrial, ovarian, urinary tract, prostate, and other cancers, depending on which gene is malfunctioning. In Lynch syndrome, differences in cancer incidence (penetrance) according to the gene involved have led to the stratification of cancer surveillance. By contrast, any differences in penetrance determined by the type of pathogenic variant remain unknown. OBJECTIVE: To determine cumulative incidences of cancer in carriers of truncating and missense or aberrant splicing pathogenic variants of the MLH1 and MSH2 genes. METHODS: Carriers of pathogenic variants of MLH1 (path_MLH1) and MSH2 (path_MSH2) genes filed in the Prospective Lynch Syndrome Database (PLSD) were categorized as truncating or missense/aberrant splicing according to the InSiGHT criteria for pathogenicity. RESULTS: Among 5199 carriers, 1045 had missense or aberrant splicing variants, and 3930 had truncating variants. Prospective observation years for the two groups were 8205 and 34,141 years, respectively, after which there were no significant differences in incidences for cancer overall or for colorectal cancer or endometrial cancers separately. CONCLUSION: Truncating and missense or aberrant splicing pathogenic variants were associated with similar average cumulative incidences of cancer in carriers of path MLH1 and path_MSH2.
  • Item
    Thumbnail Image
    Association Between Smoking and Molecular Subtypes of Colorectal Cancer
    Wang, X ; Amitay, E ; Harrison, TA ; Banbury, BL ; Berndt, S ; Brenner, H ; Buchanan, DD ; Campbell, PT ; Cao, Y ; Chan, AT ; Chang-Claude, J ; Gallinger, SJ ; Giannakis, M ; Giles, GG ; Gunter, MJ ; Hopper, JL ; Jenkins, MA ; Lin, Y ; Moreno, V ; Nishihara, R ; Newcomb, PA ; Ogino, S ; Phipps, A ; Sakoda, LC ; Schoen, RE ; Slattery, ML ; Song, M ; Sun, W ; Thibodeau, SN ; Toland, AE ; Van Guelpen, B ; Woods, MO ; Hsu, L ; Hoffmeister, M ; Peters, U (OXFORD UNIV PRESS, 2021-08)
    BACKGROUND: Smoking is associated with colorectal cancer (CRC) risk. Previous studies suggested this association may be restricted to certain molecular subtypes of CRC, but large-scale comprehensive analysis is lacking. METHODS: A total of 9789 CRC cases and 11 231 controls of European ancestry from 11 observational studies were included. We harmonized smoking variables across studies and derived sex study-specific quartiles of pack-years of smoking for analysis. Four somatic colorectal tumor markers were assessed individually and in combination, including BRAF mutation, KRAS mutation, CpG island methylator phenotype (CIMP), and microsatellite instability (MSI) status. A multinomial logistic regression analysis was used to assess the association between smoking and risk of CRC subtypes by molecular characteristics, adjusting for age, sex, and study. All statistical tests were 2-sided and adjusted for Bonferroni correction. RESULTS: Heavier smoking was associated with higher risk of CRC overall and stratified by individual markers (P trend < .001). The associations differed statistically significantly between all molecular subtypes, which was the most statistically significant for CIMP and BRAF. Compared with never-smokers, smokers in the fourth quartile of pack-years had a 90% higher risk of CIMP-positive CRC (odds ratioā€‰=ā€‰1.90, 95% confidence interval = 1.60 to 2.26) but only 35% higher risk for CIMP-negative CRC (odds ratioā€‰=ā€‰1.35, 95% confidence interval = 1.22 to 1.49; P difference = 2.1 x 10-6). The association was also stronger in tumors that were CIMP positive, MSI high, or KRAS wild type when combined (P difference < .001). CONCLUSION: Smoking was associated with differential risk of CRC subtypes defined by molecular characteristics. Heavier smokers had particularly higher risk of CRC subtypes that were CIMP positive and MSI high in combination, suggesting that smoking may be involved in the development of colorectal tumors via the serrated pathway.
  • Item
    Thumbnail Image
    DNA Methylation Signatures and the Contribution of Age-Associated Methylomic Drift to Carcinogenesis in Early-Onset Colorectal Cancer
    Joo, JE ; Clendenning, M ; Wong, EM ; Rosty, C ; Mahmood, K ; Georgeson, P ; Winship, IM ; Preston, SG ; Win, AK ; Dugue, P-A ; Jayasekara, H ; English, D ; Macrae, FA ; Hopper, JL ; Jenkins, MA ; Milne, RL ; Giles, GG ; Southey, MC ; Buchanan, DD (MDPI, 2021-06)
    We investigated aberrant DNA methylation (DNAm) changes and the contribution of ageing-associated methylomic drift and age acceleration to early-onset colorectal cancer (EOCRC) carcinogenesis. Genome-wide DNAm profiling using the Infinium HM450K on 97 EOCRC tumour and 54 normal colonic mucosa samples was compared with: (1) intermediate-onset CRC (IOCRC; diagnosed between 50-70 years; 343 tumour and 35 normal); and (2) late-onset CRC (LOCRC; >70 years; 318 tumour and 40 normal). CpGs associated with age-related methylation drift were identified using a public dataset of 231 normal mucosa samples from people without CRC. DNAm-age was estimated using epiTOC2. Common to all three age-of-onset groups, 88,385 (20% of all CpGs) CpGs were differentially methylated between tumour and normal mucosa. We identified 234 differentially methylated genes that were unique to the EOCRC group; 13 of these DMRs/genes were replicated in EOCRC compared with LOCRCs from TCGA. In normal mucosa from people without CRC, we identified 28,154 CpGs that undergo ageing-related DNAm drift, and of those, 65% were aberrantly methylated in EOCRC tumours. Based on the mitotic-based DNAm clock epiTOC2, we identified age acceleration in normal mucosa of people with EOCRC compared with normal mucosa from the IOCRC, LOCRC groups (p = 3.7 Ɨ 10-16) and young people without CRC (p = 5.8 Ɨ 10-6). EOCRC acquires unique DNAm alterations at 234 loci. CpGs associated with ageing-associated drift were widely affected in EOCRC without needing the decades-long accrual of DNAm drift as commonly seen in intermediate- and late-onset CRCs. Accelerated ageing in normal mucosa from people with EOCRC potentially underlies the earlier age of diagnosis in CRC carcinogenesis.
  • Item
    Thumbnail Image
    Novel mammogram-based measures improve breast cancer risk prediction beyond an established mammographic density measure
    Nguyen, TL ; Schmidt, DF ; Makalic, E ; Maskarinec, G ; Li, S ; Dite, GS ; Aung, YK ; Evans, CF ; Trinh, HN ; Baglietto, L ; Stone, J ; Song, Y-M ; Sung, J ; MacInnis, RJ ; Dugue, P-A ; Dowty, JG ; Jenkins, MA ; Milne, RL ; Southey, MC ; Giles, GG ; Hopper, JL (WILEY, 2021-05-01)
    Mammograms contain information that predicts breast cancer risk. We developed two novel mammogram-based breast cancer risk measures based on image brightness (Cirrocumulus) and texture (Cirrus). Their risk prediction when fitted together, and with an established measure of conventional mammographic density (Cumulus), is not known. We used three studies consisting of: 168 interval cases and 498 matched controls; 422 screen-detected cases and 1197 matched controls; and 354 younger-diagnosis cases and 944 controls frequency-matched for age at mammogram. We conducted conditional and unconditional logistic regression analyses of individually- and frequency-matched studies, respectively. We estimated measure-specific risk gradients as the change in odds per standard deviation of controls after adjusting for age and body mass index (OPERA) and calculated the area under the receiver operating characteristic curve (AUC). For interval, screen-detected and younger-diagnosis cancer risks, the best fitting models (OPERAs [95% confidence intervals]) involved: Cumulus (1.81 [1.41-2.31]) and Cirrus (1.72 [1.38-2.14]); Cirrus (1.49 [1.32-1.67]) and Cirrocumulus (1.16 [1.03 to 1.31]); and Cirrus (1.70 [1.48 to 1.94]) and Cirrocumulus (1.46 [1.27-1.68]), respectively. The AUCs were: 0.73 [0.68-0.77], 0.63 [0.60-0.66], and 0.72 [0.69-0.75], respectively. Combined, our new mammogram-based measures have twice the risk gradient for screen-detected and younger-diagnosis breast cancer (Pā€‰ā‰¤ā€‰10-12 ), have at least the same discriminatory power as the current polygenic risk score, and are more correlated with causal factors than conventional mammographic density. Discovering more information about breast cancer risk from mammograms could help enable risk-based personalised breast screening.