Clinical Pathology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 37
  • Item
    No Preview Available
    Genetic and Environmental Causes of Variation in an Automated Breast Cancer Risk Factor Based on Mammographic Textures
    Ye, Z ; Dite, GS ; Nguyen, TL ; Macinnis, RJ ; Schmidt, DF ; Makalic, E ; Al-Qershi, OM ; Nguyen-Dumont, T ; Goudey, B ; Stone, J ; Dowty, JG ; Giles, GG ; Southey, MC ; Hopper, JL ; Li, S (AMER ASSOC CANCER RESEARCH, 2024-02-06)
    BACKGROUND: Cirrus is an automated risk predictor for breast cancer that comprises texture-based mammographic features and is mostly independent of mammographic density. We investigated genetic and environmental variance of variation in Cirrus. METHODS: We measured Cirrus for 3,195 breast cancer-free participants, including 527 pairs of monozygotic (MZ) twins, 271 pairs of dizygotic (DZ) twins, and 1,599 siblings of twins. Multivariate normal models were used to estimate the variance and familial correlations of age-adjusted Cirrus as a function of age. The classic twin model was expanded to allow the shared environment effects to differ by zygosity. The SNP-based heritability was estimated for a subset of 2,356 participants. RESULTS: There was no evidence that the variance or familial correlations depended on age. The familial correlations were 0.52 (SE, 0.03) for MZ pairs and 0.16(SE, 0.03) for DZ and non-twin sister pairs combined. Shared environmental factors specific to MZ pairs accounted for 20% of the variance. Additive genetic factors accounted for 32% (SE = 5%) of the variance, consistent with the SNP-based heritability of 36% (SE = 16%). CONCLUSION: Cirrus is substantially familial due to genetic factors and an influence of shared environmental factors that was evident for MZ twin pairs only. The latter could be due to nongenetic factors operating in utero or in early life that are shared by MZ twins. IMPACT: Early-life factors, shared more by MZ pairs than DZ/non-twin sister pairs, could play a role in the variation in Cirrus, consistent with early life being recognized as a critical window of vulnerability to breast carcinogens.
  • Item
    Thumbnail Image
    Modifiable lifestyle risk factors and survival after diagnosis with multiple myeloma
    Cheah, S ; Bassett, JK ; Bruinsma, FJ ; Hopper, J ; Jayasekara, H ; Joshua, D ; Macinnis, RJ ; Prince, HM ; Southey, MC ; Vajdic, CM ; van Leeuwen, MT ; Doo, NW ; Harrison, SJ ; English, DR ; Giles, GG ; Milne, RL (TAYLOR & FRANCIS LTD, 2023-10-03)
    BACKGROUND: While remaining incurable, median overall survival for MM now exceeds 5 years. Yet few studies have investigated how modifiable lifestyle factors influence survival. We investigate whether adiposity, diet, alcohol, or smoking are associated with MM-related fatality. RESEARCH DESIGN AND METHODS: We recruited 760 incident cases of MM via cancer registries in two Australian states during 2010-2016. Participants returned questionnaires on health and lifestyle. Follow-up ended in 2020. Flexible parametric survival models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for lifestyle exposures and risk of all-cause and MM-specific fatality. RESULTS: Higher pre-diagnosis Alternative Healthy Eating Index (AHEI) scores were associated with reduced MM-specific fatality (per 10-unit score, HR = 0.84, 95%CI = 0.70-0.99). Pre-diagnosis alcohol consumption was inversely associated with MM-specific fatality, compared with nondrinkers (0.1-20 g per day, HR = 0.59, 95%CI = 0.39-0.90; >20 g per day, HR = 0.67, 95%CI = 0.40-1.13). Tobacco smoking was associated with increased all-cause fatality compared with never smoking (former smokers: HR = 1.44, 95%CI = 1.10-1.88; current smokers: HR = 1.30, 95%CI = 0.80-2.10). There was no association between pre-enrollment body mass index (BMI) and MM-specific or all-cause fatality. CONCLUSIONS: Our findings support established recommendations for healthy diets and against smoking. Higher quality diet, as measured by the AHEI, may improve survival post diagnosis with MM.
  • Item
    No Preview Available
    Causal relationships between breast cancer risk factors based on mammographic features
    Ye, Z ; Nguyen, TL ; Dite, GS ; Macinnis, RJ ; Schmidt, DF ; Makalic, E ; Al-Qershi, OM ; Bui, M ; Esser, VFC ; Dowty, JG ; Trinh, HN ; Evans, CF ; Tan, M ; Sung, J ; Jenkins, MA ; Giles, GG ; Southey, MC ; Hopper, JL ; Li, S (BMC, 2023-10-25)
    BACKGROUND: Mammogram risk scores based on texture and density defined by different brightness thresholds are associated with breast cancer risk differently and could reveal distinct information about breast cancer risk. We aimed to investigate causal relationships between these intercorrelated mammogram risk scores to determine their relevance to breast cancer aetiology. METHODS: We used digitised mammograms for 371 monozygotic twin pairs, aged 40-70 years without a prior diagnosis of breast cancer at the time of mammography, from the Australian Mammographic Density Twins and Sisters Study. We generated normalised, age-adjusted, and standardised risk scores based on textures using the Cirrus algorithm and on three spatially independent dense areas defined by increasing brightness threshold: light areas, bright areas, and brightest areas. Causal inference was made using the Inference about Causation from Examination of FAmilial CONfounding (ICE FALCON) method. RESULTS: The mammogram risk scores were correlated within twin pairs and with each other (r = 0.22-0.81; all P < 0.005). We estimated that 28-92% of the associations between the risk scores could be attributed to causal relationships between the scores, with the rest attributed to familial confounders shared by the scores. There was consistent evidence for positive causal effects: of Cirrus, light areas, and bright areas on the brightest areas (accounting for 34%, 55%, and 85% of the associations, respectively); and of light areas and bright areas on Cirrus (accounting for 37% and 28%, respectively). CONCLUSIONS: In a mammogram, the lighter (less dense) areas have a causal effect on the brightest (highly dense) areas, including through a causal pathway via textural features. These causal relationships help us gain insight into the relative aetiological importance of different mammographic features in breast cancer. For example our findings are consistent with the brightest areas being more aetiologically important than lighter areas for screen-detected breast cancer; conversely, light areas being more aetiologically important for interval breast cancer. Additionally, specific textural features capture aetiologically independent breast cancer risk information from dense areas. These findings highlight the utility of ICE FALCON and family data in decomposing the associations between intercorrelated disease biomarkers into distinct biological pathways.
  • Item
    No Preview Available
    Variance of age-specific log incidence decomposition (VALID): a unifying model of measured and unmeasured genetic and non-genetic risks
    Hopper, JL ; Dowty, JG ; Nguyen, TL ; Li, S ; Dite, GS ; MacInnis, RJ ; Makalic, E ; Schmidt, DF ; Bui, M ; Stone, J ; Sung, J ; Jenkins, MA ; Giles, GG ; Southey, MC ; Mathews, JD (OXFORD UNIV PRESS, 2023-10-05)
    BACKGROUND: The extent to which known and unknown factors explain how much people of the same age differ in disease risk is fundamental to epidemiology. Risk factors can be correlated in relatives, so familial aspects of risk (genetic and non-genetic) must be considered. DEVELOPMENT: We present a unifying model (VALID) for variance in risk, with risk defined as log(incidence) or logit(cumulative incidence). Consider a normally distributed risk score with incidence increasing exponentially as the risk increases. VALID's building block is variance in risk, Δ2, where Δ = log(OPERA) is the difference in mean between cases and controls and OPERA is the odds ratio per standard deviation. A risk score correlated r between a pair of relatives generates a familial odds ratio of exp(rΔ2). Familial risk ratios, therefore, can be converted into variance components of risk, extending Fisher's classic decomposition of familial variation to binary traits. Under VALID, there is a natural upper limit to variance in risk caused by genetic factors, determined by the familial odds ratio for genetically identical twin pairs, but not to variation caused by non-genetic factors. APPLICATION: For female breast cancer, VALID quantified how much variance in risk is explained-at different ages-by known and unknown major genes and polygenes, non-genomic risk factors correlated in relatives, and known individual-specific factors. CONCLUSION: VALID has shown that, while substantial genetic risk factors have been discovered, much is unknown about genetic and familial aspects of breast cancer risk especially for young women, and little is known about individual-specific variance in risk.
  • Item
    No Preview Available
    Heritable methylation marks associated with prostate cancer risk.
    Dowty, JG ; Yu, C ; Hosseinpour, M ; Joo, JE ; Wong, EM ; Nguyen-Dumont, T ; Rosenbluh, J ; Giles, GG ; Milne, RL ; MacInnis, RJ ; Dugué, P-A ; Southey, MC (Springer Science and Business Media LLC, 2023-07)
    DNA methylation marks that are inherited from parents to offspring are known to play a role in cancer risk and could explain part of the familial risk for cancer. We therefore conducted a genome-wide search for heritable methylation marks associated with prostate cancer risk. Peripheral blood DNA methylation was measured for 133 of the 469 members of 25 multiple-case prostate cancer families, using the EPIC array. We used these families to systematically search the genome for methylation marks with Mendelian patterns of inheritance, then we tested the 1,000 most heritable marks for association with prostate cancer risk. After correcting for multiple testing, 41 heritable methylation marks were associated with prostate cancer risk. Separate analyses, based on 869 incident cases and 869 controls from a prospective cohort study, showed that 9 of these marks near the metastable epiallele VTRNA2-1 were also nominally associated with aggressive prostate cancer risk in the population.
  • Item
    Thumbnail Image
    Independent evaluation of melanoma polygenic risk scores in UK and Australian prospective cohorts
    Steinberg, J ; Lee, JY ; Wang, H ; Law, M ; Smit, A ; Nguyen-Dumont, T ; Giles, G ; Southey, M ; Milne, R ; Mann, G ; MacInnis, R ; Cust, A (OXFORD UNIV PRESS, 2021-09)
    BACKGROUND: Previous studies suggest that polygenic risk scores (PRSs) may improve melanoma risk stratification. However, there has been limited independent validation of PRS-based risk prediction, particularly assessment of calibration (comparing predicted to observed risks). OBJECTIVES: To evaluate PRS-based melanoma risk prediction in prospective UK and Australian cohorts with European ancestry. METHODS: We analysed invasive melanoma incidence in the UK Biobank (UKB; n = 395 647, 1651 cases) and a case-cohort nested within the Melbourne Collaborative Cohort Study (MCCS, Australia; n = 4765, 303 cases). Three PRSs were evaluated: 68 single-nucleotide polymorphisms (SNPs) at 54 loci from a 2020 meta-analysis (PRS68), 50 SNPs significant in the 2020 meta-analysis excluding UKB (PRS50) and 45 SNPs at 21 loci known in 2018 (PRS45). Ten-year melanoma risks were calculated from population-level cancer registry data by age group and sex, with and without PRS adjustment. RESULTS: Predicted absolute melanoma risks based on age and sex alone underestimated melanoma incidence in the UKB [ratio of expected/observed cases: E/O = 0·65, 95% confidence interval (CI) 0·62-0·68] and MCCS (E/O = 0·63, 95% CI 0·56-0·72). For UKB, calibration was improved by PRS adjustment, with PRS50-adjusted risks E/O = 0·91, 95% CI 0·87-0·95. The discriminative ability for PRS68- and PRS50-adjusted absolute risks was higher than for risks based on age and sex alone (Δ area under the curve 0·07-0·10, P < 0·0001), and higher than for PRS45-adjusted risks (Δ area under the curve 0·02-0·04, P < 0·001). CONCLUSIONS: A PRS derived from a larger, more diverse meta-analysis improves risk prediction compared with an earlier PRS, and might help tailor melanoma prevention and early detection strategies to different risk levels. Recalibration of absolute risks may be necessary for application to specific populations.
  • Item
    Thumbnail Image
    Weight is More Informative than Body Mass Index for Predicting Postmenopausal Breast Cancer Risk: Prospective Family Study Cohort (ProF-SC)
    Ye, Z ; Li, S ; Dite, GS ; Nguyen, TL ; MacInnis, RJ ; Andrulis, IL ; Buys, SS ; Daly, MB ; John, EM ; Kurian, AW ; Genkinger, JM ; Chung, WK ; Phillips, K-A ; Thorne, H ; Winship, IM ; Milne, RL ; Dugue, P-A ; Southey, MC ; Giles, GG ; Terry, MB ; Hopper, JL (AMER ASSOC CANCER RESEARCH, 2022-03)
    UNLABELLED: We considered whether weight is more informative than body mass index (BMI) = weight/height2 when predicting breast cancer risk for postmenopausal women, and if the weight association differs by underlying familial risk. We studied 6,761 women postmenopausal at baseline with a wide range of familial risk from 2,364 families in the Prospective Family Study Cohort. Participants were followed for on average 11.45 years and there were 416 incident breast cancers. We used Cox regression to estimate risk associations with log-transformed weight and BMI after adjusting for underlying familial risk. We compared model fits using the Akaike information criterion (AIC) and nested models using the likelihood ratio test. The AIC for the weight-only model was 6.22 units lower than for the BMI-only model, and the log risk gradient was 23% greater. Adding BMI or height to weight did not improve fit (ΔAIC = 0.90 and 0.83, respectively; both P = 0.3). Conversely, adding weight to BMI or height gave better fits (ΔAIC = 5.32 and 11.64; P = 0.007 and 0.0002, respectively). Adding height improved only the BMI model (ΔAIC = 5.47; P = 0.006). There was no evidence that the BMI or weight associations differed by underlying familial risk (P > 0.2). Weight is more informative than BMI for predicting breast cancer risk, consistent with nonadipose as well as adipose tissue being etiologically relevant. The independent but multiplicative associations of weight and familial risk suggest that, in terms of absolute breast cancer risk, the association with weight is more important the greater a woman's underlying familial risk. PREVENTION RELEVANCE: Our results suggest that the relationship between BMI and breast cancer could be due to a relationship between weight and breast cancer, downgraded by inappropriately adjusting for height; potential importance of anthropometric measures other than total body fat; breast cancer risk associations with BMI and weight are across a continuum.
  • Item
    Thumbnail Image
    Segregation analysis of 17,425 population-based breast cancer families: Evidence for genetic susceptibility and risk prediction
    Li, S ; MacInnis, RJ ; Lee, A ; Nguyen-Dumont, T ; Dorling, L ; Carvalho, S ; Dite, GS ; Shah, M ; Luccarini, C ; Wang, Q ; Milne, RL ; Jenkins, MA ; Giles, GG ; Dunning, AM ; Pharoah, PDP ; Southey, MC ; Easton, DF ; Hopper, JL ; Antoniou, AC (CELL PRESS, 2022-10-06)
    Rare pathogenic variants in known breast cancer-susceptibility genes and known common susceptibility variants do not fully explain the familial aggregation of breast cancer. To investigate plausible genetic models for the residual familial aggregation, we studied 17,425 families ascertained through population-based probands, 86% of whom were screened for pathogenic variants in BRCA1, BRCA2, PALB2, CHEK2, ATM, and TP53 via gene-panel sequencing. We conducted complex segregation analyses and fitted genetic models in which breast cancer incidence depended on the effects of known susceptibility genes and other unidentified major genes and a normally distributed polygenic component. The proportion of familial variance explained by the six genes was 46% at age 20-29 years and decreased steadily with age thereafter. After allowing for these genes, the best fitting model for the residual familial variance included a recessive risk component with a combined genotype frequency of 1.7% (95% CI: 0.3%-5.4%) and a penetrance to age 80 years of 69% (95% CI: 38%-95%) for homozygotes, which may reflect the combined effects of multiple variants acting in a recessive manner, and a polygenic variance of 1.27 (95% CI: 0.94%-1.65), which did not vary with age. The proportion of the residual familial variance explained by the recessive risk component was 40% at age 20-29 years and decreased with age thereafter. The model predicted age-specific familial relative risks consistent with those observed by large epidemiological studies. The findings have implications for strategies to identify new breast cancer-susceptibility genes and improve disease-risk prediction, especially at a young age.
  • Item
    No Preview Available
    Two-stage Study of Familial Prostate Cancer by Whole-exome Sequencing and Custom Capture Identifies 10 Novel Genes Associated with the Risk of Prostate Cancer
    Schaid, DJ ; McDonnell, SK ; FitzGerald, LM ; DeRycke, L ; Fogarty, Z ; Giles, GG ; MacInnis, RJ ; Southey, MC ; Nguyen-Dumont, T ; Cancel-Tassin, G ; Cussenot, O ; Whittemore, AS ; Sieh, W ; Ioannidis, NM ; Hsieh, C-L ; Stanford, JL ; Schleutker, J ; Cropp, CD ; Carpten, J ; Hoegel, J ; Eeles, R ; Kote-Jarai, Z ; Ackerman, MJ ; Klein, CJ ; Mandal, D ; Cooney, KA ; Bailey-Wilson, JE ; Helfand, B ; Catalona, WJ ; Wiklund, F ; Riska, S ; Bahetti, S ; Larson, MC ; Albright, LC ; Teerlink, C ; Xu, J ; Isaacs, W ; Ostrander, EA ; Thibodeau, SN (ELSEVIER, 2021-03)
    BACKGROUND: Family history of prostate cancer (PCa) is a well-known risk factor, and both common and rare genetic variants are associated with the disease. OBJECTIVE: To detect new genetic variants associated with PCa, capitalizing on the role of family history and more aggressive PCa. DESIGN, SETTING, AND PARTICIPANTS: A two-stage design was used. In stage one, whole-exome sequencing was used to identify potential risk alleles among affected men with a strong family history of disease or with more aggressive disease (491 cases and 429 controls). Aggressive disease was based on a sum of scores for Gleason score, node status, metastasis, tumor stage, prostate-specific antigen at diagnosis, systemic recurrence, and time to PCa death. Genes identified in stage one were screened in stage two using a custom-capture design in an independent set of 2917 cases and 1899 controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Frequencies of genetic variants (singly or jointly in a gene) were compared between cases and controls. RESULTS AND LIMITATIONS: Eleven genes previously reported to be associated with PCa were detected (ATM, BRCA2, HOXB13, FAM111A, EMSY, HNF1B, KLK3, MSMB, PCAT1, PRSS3, and TERT), as well as an additional 10 novel genes (PABPC1, QK1, FAM114A1, MUC6, MYCBP2, RAPGEF4, RNASEH2B, ULK4, XPO7, and THAP3). Of these 10 novel genes, all but PABPC1 and ULK4 were primarily associated with the risk of aggressive PCa. CONCLUSIONS: Our approach demonstrates the advantage of gene sequencing in the search for genetic variants associated with PCa and the benefits of sampling patients with a strong family history of disease or an aggressive form of disease. PATIENT SUMMARY: Multiple genes are associated with prostate cancer (PCa) among men with a strong family history of this disease or among men with an aggressive form of PCa.
  • Item
    Thumbnail Image
    Genome-wide interaction analysis of menopausal hormone therapy use and breast cancer risk among 62,370 women
    Wang, X ; Kapoor, PM ; Auer, PL ; Dennis, J ; Dunning, AM ; Wang, Q ; Lush, M ; Michailidou, K ; Bolla, MK ; Aronson, KJ ; Murphy, RA ; Brooks-Wilson, A ; Lee, DG ; Guenel, P ; Truong, T ; Mulot, C ; Teras, LR ; Patel, A ; Dossus, L ; Kaaks, R ; Hoppe, R ; Bruening, T ; Hamann, U ; Czene, K ; Gabrielson, M ; Hall, P ; Eriksson, M ; Jung, A ; Becher, H ; Couch, FJ ; Larson, NL ; Olson, JE ; Ruddy, KJ ; Giles, GG ; MacInnis, RJ ; Southey, MC ; Le Marchand, L ; Wilkens, LR ; Haiman, CA ; Olsson, H ; Augustinsson, A ; Krueger, U ; Wagner, P ; Scott, C ; Winham, SJ ; Vachon, CM ; Perou, CM ; Olshan, AF ; Troester, MA ; Hunter, DJ ; Eliassen, HA ; Tamimi, RM ; Brantley, K ; Andrulis, IL ; Figueroa, J ; Chanock, SJ ; Ahearn, TU ; Evans, GD ; Newman, WG ; VanVeen, EM ; Howell, A ; Wolk, A ; Hakansson, N ; Ziogas, A ; Jones, ME ; Orr, N ; Schoemaker, MJ ; Swerdlow, AJ ; Kitahara, CM ; Linet, M ; Prentice, RL ; Easton, DF ; Milne, RL ; Kraft, P ; Chang-Claude, J ; Lindstrom, S (NATURE PORTFOLIO, 2022-04-13)
    Use of menopausal hormone therapy (MHT) is associated with increased risk for breast cancer. However, the relevant mechanisms and its interaction with genetic variants are not fully understood. We conducted a genome-wide interaction analysis between MHT use and genetic variants for breast cancer risk in 27,585 cases and 34,785 controls from 26 observational studies. All women were post-menopausal and of European ancestry. Multivariable logistic regression models were used to test for multiplicative interactions between genetic variants and current MHT use. We considered interaction p-values < 5 × 10-8 as genome-wide significant, and p-values < 1 × 10-5 as suggestive. Linkage disequilibrium (LD)-based clumping was performed to identify independent candidate variants. None of the 9.7 million genetic variants tested for interactions with MHT use reached genome-wide significance. Only 213 variants, representing 18 independent loci, had p-values < 1 × 105. The strongest evidence was found for rs4674019 (p-value = 2.27 × 10-7), which showed genome-wide significant interaction (p-value = 3.8 × 10-8) with current MHT use when analysis was restricted to population-based studies only. Limiting the analyses to combined estrogen-progesterone MHT use only or to estrogen receptor (ER) positive cases did not identify any genome-wide significant evidence of interactions. In this large genome-wide SNP-MHT interaction study of breast cancer, we found no strong support for common genetic variants modifying the effect of MHT on breast cancer risk. These results suggest that common genetic variation has limited impact on the observed MHT-breast cancer risk association.