Clinical Pathology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    Thumbnail Image
    In vitro model for natural tolerance to self-antigens. Inhibition of the development of surface-immunoglobulin-negative lymphocytes into T-dependent responsive B cells by antigen.
    Teale, JM ; Layton, JE ; Nossal, GJ (Rockefeller University Press, 1979-08-01)
    Neonatal and adult splenic cell suspensions were labeled with fluorescein isothiocynate-anti-Ig and fractionated into surface-immunoglobulin- (s-Ig) positive and s-Ig-negative subpopulations by the fluorescence-activated cell sorter. The subpopulations were then tested by splenic focus assay for both frequency and tolerance susceptibility of clonable 2,4,-dinitrophenol (DNP) precursors. It was shown that both adult, and neonatal, s-Ig-negative subsets contained clonable DNP-specific B-cell precursors. However, because these precursors result in fewer clones secreting IgG, they appeared to be less mature than the s-Ig-positive precursors. In the absence of helper T cells, it was found that exposure of s-Ig-negative lymphocytes to tolerogen during the process in which they were acquiring surface receptors resulted in nearly total abrogation of potential DNP clones. This finding provides compelling evidence for clonal abortion.
  • Item
    Thumbnail Image
    Cell to cell interaction in the immune response. 3. Chromosomal marker analysis of single antibody-forming cells in reconstituted, irradiated, or thymectomized mice.
    Nossal, GJ ; Cunningham, A ; Mitchell, GF ; Miller, JF (Rockefeller University Press, 1968-10-01)
    Two new methods are described for making chromosomal spreads of single antibody-forming cells. The first depends on the controlled rupture of cells in small microdroplets through the use of a mild detergent and application of a mechanical stress on the cell. The second is a microadaptation of the conventional Ford technique. Both methods have a success rate of over 50%, though the quality of chromosomal spreads obtained is generally not as good as with conventional methods. These techniques have been applied to an analysis of cell to cell interaction in adoptive immune responses, using the full syngeneic transfer system provided by the use of CBA and CBA/T6T6 donor-recipient combinations. When neonatally thymectomized mice were restored to adequate immune responsiveness to sheep erythrocytes by injections of either thymus cells or thoracic duct lymphocytes, it was shown that all the actual dividing antibody-forming cells were not of donor but of host origin. When lethally irradiated mice were injected with chromosomally marked but syngeneic mixtures of thymus and bone marrow cells, a rather feeble adoptive immune response ensued; all the antibody-forming cells identified were of bone marrow origin. When mixtures of bone marrow cells and thoracic duct lymphocytes were used, immune restoration was much more effective, and over three-quarters of the antibody-forming mitotic figures carried the bone marrow donor chromosomal marker. The results were deemed to be consistent with the conclusions derived in the previous paper of this series, namely that thymus contains some, but a small number only of antigen-reactive cells (ARC), bone marrow contains antibody-forming cell precursors (AFCP) but no ARC, and thoracic duct lymph contains both ARC and AFCP with a probable predominance of the former. A vigorous immune response to sheep erythrocytes probably requires a collaboration between the two cell lineages, involving proliferation first of the ARC and then of the AFCP. The results stressed that the use of large numbers of pure thoracic duct lymphocytes in adoptive transfer work could lead to good adoptive immune responses, but that such results should not be construed as evidence against cell collaboration hypotheses. Some possible further uses of single cell chromosome techniques were briefly discussed.
  • Item
    Thumbnail Image
    Autoradiographic studies on the immune response.I. The kinetics of plasma cell proliferation.
    NOSSAL, GJ ; MAKELA, O (Rockefeller University Press, 1962-01-01)
    The origin and growth kinetics of plasma cells have been investigated using autoradiographic labeling techniques. Rats immunized once with Salmonella flagella were given a single pulse of H(3)-thymidine 4 or 40 weeks later. 2 hours after the tracer injection, they received a secondary antigenic stimulus. When animals were sacrificed immediately only certain cells from the resting primarily immunized lymph nodes, notably large and medium lymphocytes, were labeled. Subsequent to secondary stimulation, animals were killed at intervals; nearly all the plasma cells formed within the next 5 to 6 days were labeled. They must thus have been the progeny of cells already capable of synthesizing DNA in resting nodes, most probably of large lymphocytes. Plasmacytopoiesis began with little or no lag following secondary immunization, and the number of labeled plasma cells rose exponentially between the 2nd and 4th day, with a doubling time of about 12 hours. Studies of mean grain counts of primitive cells also suggested that the generation time of plasmablasts was 12 hours or less. The hypothesis was proposed that immunological memory depended on the persistence, following primary stimulation, of a continuously dividing stem line of primitive lymphocytes, reactive at all times to further antigenic stimulation.
  • Item
    Thumbnail Image
    Antigens in immunity. XV. Ultrastructural features of antigen capture in primary and secondary lymphoid follicles.
    Nossal, GJ ; Abbot, A ; Mitchell, J ; Lummus, Z (Rockefeller University Press, 1968-02-01)
    This paper describes the trapping of antigen in lymphoid follicles of rat popliteal lymph nodes as revealed by electron microscopic radioautographs following injection of (125)I-labeled Salmonella adelaide flagella and other materials. The antigen was taken up vigorously, and to an approximately equal extent, by both primary and secondary follicles. The rate of uptake was faster in preimmunized than in virgin adult rats. The bulk of the antigen in follicles was extracellular, and persisted in this location for at least 3 wk. Label was most frequently found at or near the surface of fine cell processes. Many of these were branches of dendritic follicular reticular cells. Such processes interdigitated with equally fine processes of lymphocytes, creating an elaborate meshwork. In some cases, antigen was found between lymphocytes which appeared to be in close apposition. Occasionally, a few grains appeared over lymphocyte nuclei and study of serial sections suggested that this probably represented true entry of small amounts of antigen into lymphocytes. The characteristic "tingible body" macrophages (TBM) of germinal centers appeared to play only a secondary role in follicular antigen retention. They showed degrees of labeling over their phagocytic inclusions varying from negligible to moderately heavy. Moreover, follicles lacking or poor in TBM retained antigen just as effectively as those containing numerous TBM. The hypothesis is advanced that TBM may be derived from monocytes that migrate down from the circular sinus. Follicular localization of three other materials was also studied, though not in such detail. These were (125)I-HSA complexed to anti-HSA: (125)I-labeled autologous IgG; and (125)I-monomeric flagellin. All of these showed the basic features of intercellular, membrane-associated deposition noted with (125)I-flagella. The role of follicular antigen depots in immune induction is discussed. The tentative conclusion is reached that follicular antigen in a primary follicle encounters natural antibody on the surface of certain antigen-reactive lymphocytes. The resultant reaction causes blast cell transformation and eventually the genesis of a germinal center.
  • Item
    Thumbnail Image
    In vitro stimulation of antibody formation by peritoneal cells. I. Plaque technique of high sensitivity enabling access to the cells.
    Nossal, GJ ; Bussard, AE ; Lewis, H ; Mazie, JC (Rockefeller University Press, 1970-05-01)
    An improved method for the short-term culture of mouse peritoneal cells in a medium containing carboxymethylcellulose (CMC), sheep erythrocytes (SRBC), and guinea pig complement is described. It involves preparation of microcultures, of thickness 12-15 micro and volume 3.6 microl, under paraffin oil. With such cultures, peritoneal cells from normal, unimmunized young male CBA mice give about 3000 hemolytic plaques per million cells cultured, this figure being attained within 24 hr. The plaque detection method is about four times as sensitive as the Jerne technique. A method is described whereby such plaque-forming cells (PFC) can be transferred, by micromanipulation, to fresh monolayer cultures containing SRBC, CMC, and complement. In this fashion, the secretory capacity and susceptibility to inhibitors of peritoneal PFC can be tested in detail. Using this technique, evidence is presented that the hemolytic substance responsible for plaque formation is actually secreted by the cell at the center of the plaque, and is not a complement component but probably an antibody. Studies on the time of plaque appearance after cell transfer, and the subsequent growth rate of the zone of hemolysis, have been performed. They speak against the idea that the PFC is either a reservoir of cytophilic antibody or a "background" PFC. Rather they suggest that active antibody secretion is induced in the cell at some defined time point in culture. Detailed kinetics of the rate of appearance of plaques in peritoneal cell cultures revealed an exponential phase lasting from about 3 to about 13 hr with a doubling time of 2 hr. The reasons for this are not known. A greatly heightened reactivity was shown in peritoneal cells of mice that had been pregnant several times. Cultures of such cells showed more rapid plaque appearance and a peak activity about 20 times higher than with cells from young male mice. Cultures in which 1 cell in 10 formed a plaque were not infrequent. A series of experiments on germ-free mice showed reactivity similar to that of conventional mice from the same strain and source. The significance of the findings for cellular immunology are discussed.
  • Item
    Thumbnail Image
    Quantitative features of a sandwich radioimmunolabeling technique for lymphocyte surface receptors.
    Nossal, GJ ; Warner, NL ; Lewis, H ; Sprent, J (Rockefeller University Press, 1972-02-01)
    The present study was designed to devise and characterize an indirect or sandwich radioimmunolabeling technique for the study of lymphocyte surface receptors of immunoglobulin nature. Mouse lymphocytes from various sources were treated by the method of Shortman et al. to remove debris and damaged cells. This was an important preliminary step, as without it, little meaning could be attached to bulk scintillation counting of labeled cell suspensions, in view of the marked tendency of dead or damaged cells to adsorb protein nonspecifically. Next, cells were reacted at 0 degrees C for 30 min with graded dilutions of unlabeled rabbit antisera against defined mouse Ig chains. After washing, the cells were reacted with a sheep anti-rabbit globulin reagent labeled with (125)I, again at graded concentrations. After further washing, lymphocyte labeling was quantitated by both bulk scintillation counting and radioautography. Conditions were defined in which nonthymus-derived cells (B cells) but not thymus-derived cells (T cells) could be labeled. Most B cells displayed kappa- and micro-chains on their surface, but some also displayed alpha- and gamma(2)-chains, though in smaller amounts. When the concentration of both the first and the second reagents were raised considerably, conditions were defined under which virtually all T cells could be labeled by polyvalent antiglobulin sera, anti-kappa sera, or, with more difficulty, by anti-micro sera. A large series of control experiments confirmed the serologic specificity of this labeling. It was shown that under equivalent conditions, B cells bind 100-400 times more antiglobulin than do T cells. The theoretical implications of the results are briefly discussed. It is argued that the sandwich approach offers certain technical advantages over direct labeling procedures for further analyses of T cell receptors and for studies of receptor metabolism.
  • Item
    Thumbnail Image
    Effector cell blockade. A new mechanism of immune hyporeactivity induced by multivalent antigens.
    Schrader, JW ; Nossal, GJ (Rockefeller University Press, 1974-06-01)
    This study describes the effects of incubating antibody-forming cells (AFC), either as mass cell suspensions, or as single AFC in microdroplets, with antigens against which the cells display specificity. Most of the work was done with hapten-specific anti-DNP-AFC, but AFC with specificity against flagellar antigens or fowl gamma globulin (FGG) were also included. It was noted that 30-min incubation of AFC with highly multivalent forms of antigen caused a substantial partial suppression of the antibody-forming performance of the AFC as measured by a hemolytic plaque test. Thus, when cell suspensions containing anti-DNP plaque-forming cells (PFC), were incubated for 30 min at 37 degrees C with 100 microg of DNP-polymerized flagellin (DNP-POL), the number of plaques appearing after washing of the cells and placing them in plaque-revealing erythrocyte monolayers was reduced to 50% or less compared with the number of plaques observed with control portions preincubated with medium alone. Preincubation with DNP-lysine, with oligovalent DNP-protein conjugates, or with irrelevant antigens produced no such inhibition. Studies where preinhibited PFC suspensions were mixed with control suspensions before assay showed that a nonspecific carryover of antigen into the assay system was not involved. The inhibitory effect could also be initiated by holding cells at 0 degrees C with DNP-POL, but in that case, inhibition only became manifest after cells were incubated for 30 min at 37 degrees C before being placed in plaque-revealing monolayers. This suggested that inhibition was initiated by adsorption of multivalent antigen onto PFC-surface Ig, but required some active process before secretion actually slowed down. The effect was dose- and time-dependent, antigen-specific, and generalized for all antigens studied. As well as yielding reduced plaque numbers, the preinhibited cells also gave smaller, more turbid plaques, suggesting a reduction in antibody-forming rate by each PFC rather than the elimination of PFC. Consistent with this suggestion was the observation that the degree of inhibition of plaque formation could be increased by decreasing the sensitivity of the assay so that only AFC secreting at high rates were detected. A micromanipulation study, where single PFC were subjected to inhibition, and were then tested for the rate at which they could cause hemolysis, showed a 68% inhibition of mean secretory rate. Micromanipulation studies were performed to test the amount of cell surface-associated Ig on control and preinhibited PFC. For this, single PFC were held with [(125)I]antiglobulin and quantitative radioautography was performed. No significant difference emerged, suggesting that retention of secreted Ig on cell-attached antigen was not the cause of inhibition. The results are discussed in the framework of tolerance models and blocking effects at the T-cell level by antigen-antibody complexes. The name effector cell blockade is suggested in the belief that the phenomenon may be a general one applying to both T and B cells.
  • Item
    Thumbnail Image
    ANTIGENS IN IMMUNITY. VI. THE PHAGOCYTIC RETICULUM OF LYMPH NODE FOLLICLES.
    MILLER, JJ ; NOSSAL, GJ (Rockefeller University Press, 1964-12-01)
    The localization of antigen in primary follicles and germinal centers of rat popliteal lymph nodes described previously using I(125)- and I(125)-labeled antigen has been confirmed by direct staining with fluorescent antibodies. A fine web of phagocytic reticulum in primary follicles was found to be responsible for antigen localization in this area. The nature of this web was confirmed by studies of the localization of colloidal carbon. This unique feature of primary follicles is discussed in relation to its importance in the induction of immune responses, our belief being that the great surface area of antigen retaining cytoplasm in primary follicles is responsible for the appearance of germinal centers in these particular parts of the node.
  • Item
    Thumbnail Image
    In vitro stimulation of antibody formation by peritoneal cells. II. Cell interactions and effects of immunochemical or metabolic inhibitors.
    Bussard, AE ; Nossal, GJ ; Mazie, JC ; Lewis, H (Rockefeller University Press, 1970-05-01)
    Peritoneal cells (PC) from normal, unimmunized mice were placed in ultra-thin monolayer cultures containing carboxymethylcellulose (CMC), sheep red blood cells (SRBC), and complement, and tested for the appearance of plaques of lysis. The behavior of PC from young male mice and from female mice that had given birth to several litters (retired breeder mice) was studied. It was found that cells from spleen, mesenteric lymph node, thymus, bone marrow, thoracic duct lymph, or Peyer's patches could not form plaques in the CMC microcultures. Also, various combinations of these cells did not lead to plaque formation. When cells from any of these sources were mixed with PC, there was either no effect or an actual inhibition of plaque formation, the plaque counts being lower than would have been expected from the number of PC present in the mixture. Optimal plaque formation by peritoneal cells was found to be dependent on an optimal cell concentration, this optimum being around 5 x 10(6)/ml for young male mice and 0.5 x 10(6)/ml for retired breeders. Inhibition of plaque formation was found with either supra- or suboptimal cell concentrations. The inhibition by excess cell concentration may have been a simple nutritional or nonspecific overcrowding effect, as it could also be induced by an addition of an excess of spleen or lymph node cells. The failure of more dilute PC preparations to give adequate numbers of plaques appeared to be more specific, as plaque numbers could not be restored to normal by addition of spleen cells. The suggestion was that some cell to cell interaction between PC was involved. This dependence on cell concentration was not seen with immunized spleen PFC. Plaque appearance could be specifically and reversibly suppressed by placing PC in a medium containing rabbit anti-mouse IgM serum. Anti-IgG serum had no such effect. These experiments strengthened our view, expressed in the accompanying paper, that plaque formation was due to the formation of IgM, hemolytic antibody to SRBC by the PC. Metabolic inhibitors were incorporated into monolayer cultures and had different effects with the different types of PFC used. In the case of spleen cells from mice actively immunized against SRBC 4 days before killing, actinomycin D had no effect on plaque counts and puromycin reduced plaque numbers by a factor of 2. In the case of PC from young male mice, actinomycin D in concentrations above 0.01 microg/ml caused reductions down to < 2% of control values in plaque counts, and puromycin (10 microg/ml) had a similar effect. The PC from retired breeder mice occupied an intermediate position between the two cases just discussed. A compartment of cells, equal to about one-fifth of the total normal PFC compartment, was identified as resistant to high concentrations of either actinomycin D or puromycin, being similar in these respects to PFC from spleens of intentionally preimmunized mice. The mitotic poison, Colcemid, did not affect plaque counts in any situation tested. The theoretical implications of these results are briefly discussed.
  • Item
    Thumbnail Image
    Induction of B cell tolerance in vitro to 2,4-dinitrophenyl coupled to a copolymer of D-glutamic acid and D-lysine (DNP-D-GL).
    Nossal, GJ ; Pike, BL ; Katz, DH (Rockefeller University Press, 1973-07-01)
    Spleen cells from CBA or congenitally athymic ("nude") mice were pretreated with various concentrations of DNP coupled to a copolymer of D-glutamic acid and D-lysine (DNP(37)-D-GL), under various conditions of time and temperature. After washing, they were then cultured for 3 days with the direct B cell immunogen, DNP coupled to Salmonella adelaide flagella (DNP-FLA). Under all circumstances tried, exposure of cells to 1 microg/ml DNP-D-GL caused a 70-100% depression in the subsequent DNP-specific PFC response, and 100 ng/ml caused a lesser but still substantial effect. At the concentrations used, DNP-D-GL did not affect irrelevant antibody responses. Though cells from nude mice responded somewhat less well to DNP-FLA than those from CBA mice, no significant difference in the reaction of the two populations to the tolerogen was noted. This demonstrates that DNP-D-GL can, as previously suspected, directly cause unresponsiveness in B lymphocytes.