Clinical Pathology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 30
  • Item
    Thumbnail Image
    Genome-wide association study and meta-analysis in Northern European populations replicate multiple colorectal cancer risk loci
    Tanskanen, T ; van den Berg, L ; Valimaki, N ; Aavikko, M ; Ness-Jensen, E ; Hveem, K ; Wettergren, Y ; Lindskog, EB ; Tonisson, N ; Metspalu, A ; Silander, K ; Orlando, G ; Law, PJ ; Tuupanen, S ; Gylfe, AE ; Hanninen, UA ; Cajuso, T ; Kondelin, J ; Sarin, A-P ; Pukkala, E ; Jousilahti, P ; Salomaa, V ; Ripatti, S ; Palotie, A ; Jarvinen, H ; Renkonen-Sinisalo, L ; Lepisto, A ; Bohm, J ; Mecklin, J-P ; Al-Tassan, NA ; Palles, C ; Martin, L ; Barclay, E ; Tenesa, A ; Farrington, SM ; Timofeeva, MN ; Meyer, BF ; Wakil, SM ; Campbell, H ; Smith, CG ; Idziaszczyk, S ; Maughan, TS ; Kaplan, R ; Kerr, R ; Kerr, D ; Buchanan, DD ; Win, AK ; Hopper, J ; Jenkins, MA ; Newcomb, PA ; Gallinger, S ; Conti, D ; Schumacher, FR ; Casey, G ; Cheadle, JP ; Dunlop, MG ; Tomlinson, IP ; Houlston, RS ; Palin, K ; Aaltonen, LA (WILEY, 2018-02-01)
    Genome-wide association studies have been successful in elucidating the genetic basis of colorectal cancer (CRC), but there remains unexplained variability in genetic risk. To identify new risk variants and to confirm reported associations, we conducted a genome-wide association study in 1,701 CRC cases and 14,082 cancer-free controls from the Finnish population. A total of 9,068,015 genetic variants were imputed and tested, and 30 promising variants were studied in additional 11,647 cases and 12,356 controls of European ancestry. The previously reported association between the single-nucleotide polymorphism (SNP) rs992157 (2q35) and CRC was independently replicated (p = 2.08 × 10-4 ; OR, 1.14; 95% CI, 1.06-1.23), and it was genome-wide significant in combined analysis (p = 1.50 × 10-9 ; OR, 1.12; 95% CI, 1.08-1.16). Variants at 2q35, 6p21.2, 8q23.3, 8q24.21, 10q22.3, 10q24.2, 11q13.4, 11q23.1, 14q22.2, 15q13.3, 18q21.1, 20p12.3 and 20q13.33 were associated with CRC in the Finnish population (false discovery rate < 0.1), but new risk loci were not found. These results replicate the effects of multiple loci on the risk of CRC and identify shared risk alleles between the Finnish population isolate and outbred populations.
  • Item
    Thumbnail Image
    Associations of alcohol intake, smoking, physical activity and obesity with survival following colorectal cancer diagnosis by stage, anatomic site and tumor molecular subtype
    Jayasekara, H ; English, DR ; Haydon, A ; Hodge, AM ; Lynch, BM ; Rosty, C ; Williamson, EJ ; Clendenning, M ; Southey, MC ; Jenkins, MA ; Room, R ; Hopper, JL ; Milne, RL ; Buchanan, DD ; Giles, GG ; MacInnis, RJ (WILEY, 2018-01-15)
    The influence of lifestyle factors on survival following a diagnosis of colorectal cancer (CRC) is not well established. We examined associations between lifestyle factors measured before diagnosis and CRC survival. The Melbourne Collaborative Cohort Study collected data on alcohol intake, cigarette smoking and physical activity, and body measurements at baseline (1990-1994) and wave 2 (2003-2007). We included participants diagnosed to 31 August 2015 with incident stages I-III CRC within 10-years post exposure assessment. Information on tumor characteristics and vital status was obtained. Tumor DNA was tested for microsatellite instability (MSI) and somatic mutations in oncogenes BRAF (V600E) and KRAS. We estimated hazard ratios (HRs) for associations between lifestyle factors and overall and CRC-specific mortality using Cox regression. Of 724 eligible CRC cases, 339 died (170 from CRC) during follow-up (average 9.0 years). Exercise (non-occupational/leisure-time) was associated with higher CRC-specific survival for stage II (HR = 0.25, 95% CI: 0.10-0.60) but not stages I/III disease (p for interaction = 0.01), and possibly for colon and KRAS wild-type tumors. Waist circumference was inversely associated with CRC-specific survival (HR = 1.25 per 10 cm increment, 95% CI: 1.08-1.44), independent of stage, anatomic site and tumor molecular status. Cigarette smoking was associated with lower overall survival, with suggestive evidence of worse survival for BRAF mutated CRC, but not with CRC-specific survival. Alcohol intake was not associated with survival. Survival did not differ by MSI status. We have identified pre-diagnostic predictors of survival following CRC that may have clinical and public health relevance.
  • Item
    Thumbnail Image
    Mendelian randomisation implicates hyperlipidaemia as a risk factor for colorectal cancer
    Rodriguez-Broadbent, H ; Law, PJ ; Sud, A ; Palin, K ; Tuupanen, S ; Gylfe, A ; Hanninen, UA ; Cajuso, T ; Tanskanen, T ; Kondelin, J ; Kaasinen, E ; Sarin, A-P ; Ripatti, S ; Eriksson, JG ; Rissanen, H ; Knekt, P ; Pukkala, E ; Jousilahti, P ; Salomaa, V ; Palotie, A ; Renkonen-Sinisalo, L ; Lepisto, A ; Bohm, J ; Mecklin, J-P ; Al-Tassan, NA ; Palles, C ; Martin, L ; Barclay, E ; Farrington, SM ; Timofeeva, MN ; Meyer, BF ; Wakil, SM ; Campbell, H ; Smith, CG ; Idziaszczyk, S ; Maughan, TS ; Kaplan, R ; Kerr, R ; Kerr, D ; Passarelli, MN ; Figueiredo, JC ; Buchanan, DD ; Win, AK ; Hopper, JL ; Jenkins, MA ; Lindor, NM ; Newcomb, PA ; Gallinger, S ; Conti, D ; Schumacher, F ; Casey, G ; Aaltonen, LA ; Cheadle, JP ; Tomlinson, IP ; Dunlop, MG ; Houlston, RS (WILEY, 2017-06-15)
    While elevated blood cholesterol has been associated with an increased risk of colorectal cancer (CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation (MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) as instrumental variables (IV). We calculated MR estimates for each risk factor with CRC using SNP-CRC associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated with an elevated risk of CRC (odds ratios (OR) per unit SD increase = 1.46, 95% confidence interval [CI]: 1.20-1.79, p = 1.68 × 10-4 ). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92-1.18, p = 0.49), 0.94 (95% CI: 0.84-1.05, p = 0.27), and 0.98 (95% CI: 0.85-1.12, p = 0.75) respectively. A genetic risk score for 3-hydoxy-3-methylglutaryl-coenzyme A reductase (HMGCR) to mimic the effects of statin therapy was associated with a reduced CRC risk (OR = 0.69, 95% CI: 0.49-0.99, p = 0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and a further rationale for implementing public health strategies to reduce the prevalence of hyperlipidaemia.
  • Item
    Thumbnail Image
    Lifetime alcohol intake is associated with an increased risk of KRAS plus and BRAF-/KRAS- but not BRAF plus colorectal cancer
    Jayasekara, H ; MacInnis, RJ ; Williamson, EJ ; Hodge, AM ; Clendenning, M ; Rosty, C ; Walters, R ; Room, R ; Southey, MC ; Jenkins, MA ; Milne, RL ; Hopper, JL ; Giles, GG ; Buchanan, DD ; English, DR (WILEY, 2017-04)
    Ethanol in alcoholic beverages is a causative agent for colorectal cancer. Colorectal cancer is a biologically heterogeneous disease, and molecular subtypes defined by the presence of somatic mutations in BRAF and KRAS are known to exist. We examined associations between lifetime alcohol intake and molecular and anatomic subtypes of colorectal cancer. We calculated usual alcohol intake for 10-year periods from age 20 using recalled frequency and quantity of beverage-specific consumption for 38,149 participants aged 40-69 years from the Melbourne Collaborative Cohort Study. Cox regression was performed to derive hazard ratios (HRs) and 95% confidence intervals (CIs) for the association between lifetime alcohol intake and colorectal cancer risk. Heterogeneity in the HRs across subtypes of colorectal cancer was assessed. A positive dose-dependent association between lifetime alcohol intake and overall colorectal cancer risk (mean follow-up = 14.6 years; n = 596 colon and n = 326 rectal cancer) was observed (HR = 1.08, 95% CI: 1.04-1.12 per 10 g/day increment). The risk was greater for rectal than colon cancer (phomogeneity  = 0.02). Alcohol intake was associated with increased risks of KRAS+ (HR = 1.07, 95% CI: 1.00-1.15) and BRAF-/KRAS- (HR = 1.05, 95% CI: 1.00-1.11) but not BRAF+ tumors (HR = 0.89, 95% CI: 0.78-1.01; phomogeneity  = 0.01). Alcohol intake is associated with an increased risk of KRAS+ and BRAF-/KRAS- tumors originating via specific molecular pathways including the traditional adenoma-carcinoma pathway but not with BRAF+ tumors originating via the serrated pathway. Therefore, limiting alcohol intake from a young age might reduce colorectal cancer originating via the traditional adenoma-carcinoma pathway.
  • Item
    Thumbnail Image
    Physical activity and the risk of colorectal cancer in Lynch syndrome
    Dashti, SG ; Win, AK ; Hardikar, SS ; Glombicki, SE ; Mallenahalli, S ; Thirumurthi, S ; Peterson, SK ; You, YN ; Buchanan, DD ; Figueiredo, JC ; Campbell, PT ; Gallinger, S ; Newcomb, PA ; Potter, JD ; Lindor, NM ; Le Marchand, L ; Haile, RW ; Hopper, JL ; Jenkins, MA ; Basen-Engquist, KM ; Lynch, PM ; Pande, M (WILEY, 2018-11-01)
    Greater physical activity is associated with a decrease in risk of colorectal cancer for the general population; however, little is known about its relationship with colorectal cancer risk in people with Lynch syndrome, carriers of inherited pathogenic mutations in genes affecting DNA mismatch repair (MMR). We studied a cohort of 2,042 MMR gene mutations carriers (n = 807, diagnosed with colorectal cancer), from the Colon Cancer Family Registry. Self-reported physical activity in three age-periods (20-29, 30-49 and ≥50 years) was summarized as average metabolic equivalent of task hours per week (MET-hr/week) during the age-period of cancer diagnosis or censoring (near-term exposure) and across all age-periods preceding cancer diagnosis or censoring (long-term exposure). Weighted Cox regression was used to estimate the hazard ratio (HR) and 95% confidence intervals (CI) for the association between physical activity and colorectal cancer risk. Near-term physical activity was associated with a small reduction in the risk of colorectal cancer (HR ≥35 vs. <3.5 MET-hr/week, 0.71; 95% CI, 0.53-0.96). The strength and direction of associations were similar for long-term physical activity, although the associations were not nominally significant. Our results suggest that physical activity is inversely associated with the risk of colorectal cancer for people with Lynch syndrome; however, further confirmation is warranted. The potential modifying effect of physical activity on colorectal cancer risk in people with Lynch syndrome could be useful for risk prediction and support counseling advice for lifestyle modification to reduce cancer risk.
  • Item
    Thumbnail Image
    Linkage to chromosome 2q32.2-q33.3 in familial serrated neoplasia (Jass syndrome)
    Roberts, A ; Nancarrow, D ; Clendenning, M ; Buchanan, DD ; Jenkins, MA ; Duggan, D ; Taverna, D ; McKeone, D ; Walters, R ; Walsh, MD ; Young, BW ; Jass, JR ; Rosty, C ; Gattas, M ; Pelzer, E ; Hopper, JL ; Goldblatt, J ; George, J ; Suthers, GK ; Phillips, K ; Parry, S ; Woodall, S ; Arnold, J ; Tucker, K ; Muir, A ; Drini, M ; Macrae, F ; Newcomb, P ; Potter, JD ; Pavluk, E ; Lindblom, A ; Young, JP (SPRINGER, 2011-06)
    Causative genetic variants have to date been identified for only a small proportion of familial colorectal cancer (CRC). While conditions such as Familial Adenomatous Polyposis and Lynch syndrome have well defined genetic causes, the search for variants underlying the remainder of familial CRC is plagued by genetic heterogeneity. The recent identification of families with a heritable predisposition to malignancies arising through the serrated pathway (familial serrated neoplasia or Jass syndrome) provides an opportunity to study a subset of familial CRC in which heterogeneity may be greatly reduced. A genome-wide linkage screen was performed on a large family displaying a dominantly-inherited predisposition to serrated neoplasia genotyped using the Affymetrix GeneChip Human Mapping 10 K SNP Array. Parametric and nonparametric analyses were performed and resulting regions of interest, as well as previously reported CRC susceptibility loci at 3q22, 7q31 and 9q22, were followed up by finemapping in 10 serrated neoplasia families. Genome-wide linkage analysis revealed regions of interest at 2p25.2-p25.1, 2q24.3-q37.1 and 8p21.2-q12.1. Finemapping linkage and haplotype analyses identified 2q32.2-q33.3 as the region most likely to harbour linkage, with heterogeneity logarithm of the odds (HLOD) 2.09 and nonparametric linkage (NPL) score 2.36 (P = 0.004). Five primary candidate genes (CFLAR, CASP10, CASP8, FZD7 and BMPR2) were sequenced and no segregating variants identified. There was no evidence of linkage to previously reported loci on chromosomes 3, 7 and 9.
  • Item
    Thumbnail Image
    Morphological predictors of BRCA1 germline mutations in young women with breast cancer
    Southey, MC ; Ramus, SJ ; Dowty, JG ; Smith, LD ; Tesoriero, AA ; Wong, EEM ; Dite, GS ; Jenkins, MA ; Byrnes, GB ; Winship, I ; Phillips, K-A ; Giles, GG ; Hopper, JL (NATURE PUBLISHING GROUP, 2011-03-15)
    BACKGROUND: Knowing a young woman with newly diagnosed breast cancer has a germline BRCA1 mutation informs her clinical management and that of her relatives. We sought an optimal strategy for identifying carriers using family history, breast cancer morphology and hormone receptor status data. METHODS: We studied a population-based sample of 452 Australian women with invasive breast cancer diagnosed before age 40 years for whom we conducted extensive germline mutation testing (29 carried a BRCA1 mutation) and a systematic pathology review, and collected three-generational family history and tumour ER and PR status. Predictors of mutation status were identified using multiple logistic regression. Areas under receiver operator characteristic (ROC) curves were estimated using five-fold stratified cross-validation. RESULTS: The probability of being a BRCA1 mutation carrier increased with number of selected histology features even after adjusting for family history and ER and PR status (P<0.0001). From the most parsimonious multivariate model, the odds ratio for being a carrier were: 9.7 (95% confidence interval: 2.6-47.0) for trabecular growth pattern (P=0.001); 7.8 (2.7-25.7) for mitotic index over 50 mitoses per 10 high-powered field (P=0.0003); and 2.7 (1.3-5.9) for each first-degree relative with breast cancer diagnosed before age 60 years (P=0.01).The area under the ROC curve was 0.87 (0.83-0.90). CONCLUSION: Pathology review, with attention to a few specific morphological features of invasive breast cancers, can identify almost all BRCA1 germline mutation carriers among women with early-onset breast cancer without taking into account family history.
  • Item
    Thumbnail Image
    Genomic Characterization of Upper-Tract Urothelial Carcinoma in Patients With Lynch Syndrome
    Donahue, TE ; Bagrodia, A ; Audenet, F ; Donoghue, MTA ; Cha, EK ; Sfakianos, JP ; Sperling, D ; Al-Ahmadie, H ; Clendenning, M ; Rosty, C ; Buchanan, DD ; Jenkins, M ; Hopper, J ; Winship, I ; Templeton, AS ; Walsh, MF ; Stadler, ZK ; Iyer, G ; Taylor, B ; Coleman, J ; Lindor, NM ; Solit, DB ; Bochner, BH (AMER SOC CLINICAL ONCOLOGY, 2018-01-23)
    PURPOSE: Patients with Lynch syndrome (LS) have a significantly increased risk of developing upper-tract urothelial carcinoma (UTUC). Here, we sought to identify differences in the patterns of mutational changes in LS-associated versus sporadic UTUCs. PATIENTS AND METHODS: We performed targeted sequencing of 17 UTUCs from patients with documented LS-associated germline mutations (LS-UTUCs) using the Memorial Sloan Kettering Integrated Molecular Profiling of Actionable Cancer Targets targeted exon capture assay and compared the results with those from a recently characterized cohort of 82 patients with sporadic UTUC. RESULTS: Patients with LS-UTUC were significantly younger, had had less exposure to tobacco, and more often presented with a ureteral primary site compared with patients with sporadic UTUC. The median number of mutations per tumor was significantly greater in LS-UTUC tumors than in tumors from the sporadic cohort (58; interquartile range [IQR], 47-101 v 6; IQR, 4-10; P < .001), as was the MSIsensor score (median, 25.1; IQR, 17.9-31.2 v 0.03; IQR, 0-0.44; P < .001). Differences in the genetic landscape were observed between sporadic and LS-associated tumors. Alterations in KMT2D, CREBBP, or ARID1A or in DNA damage response and repair genes were present at a significantly higher frequency in LS-UTUC. CIC, NOTCH1, NOTCH3, RB1, and CDKN1B alterations were almost exclusive to LS-UTUC. Although FGFR3 mutations were identified in both cohorts, the R248C hotspot mutation was highly enriched in LS-UTUC. CONCLUSION: LSand sporadic UTUCs have overlapping but distinct genetic signatures. LS-UTUC is associated with hypermutation and a significantly higher prevalence of FGFR3 R248C mutation. Prospective molecular characterization of patients to identify those with LS-UTUC may help guide treatment.
  • Item
    Thumbnail Image
    Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes
    Mavaddat, N ; Michailidou, K ; Dennis, J ; Lush, M ; Fachal, L ; Lee, A ; Tyrer, JP ; Chen, T-H ; Wang, Q ; Bolla, MK ; Yang, X ; Adank, MA ; Ahearn, T ; Aittomaki, K ; Allen, J ; Andrulis, IL ; Anton-Culver, H ; Antonenkova, NN ; Arndt, V ; Aronson, KJ ; Auer, PL ; Auvinen, P ; Barrdahl, M ; Freeman, LEB ; Beckmann, MW ; Behrens, S ; Benitez, J ; Bermisheva, M ; Bernstein, L ; Blomqvist, C ; Bogdanova, N ; Bojesen, SE ; Bonanni, B ; Borresen-Dale, A-L ; Brauch, H ; Bremer, M ; Brenner, H ; Brentnall, A ; Brock, IW ; Brooks-Wilson, A ; Brucker, SY ; Bruening, T ; Burwinkel, B ; Campa, D ; Carter, BD ; Castelao, JE ; Chanock, SJ ; Chlebowski, R ; Christiansen, H ; Clarke, CL ; Collee, JM ; Cordina-Duverger, E ; Cornelissen, S ; Couch, FJ ; Cox, A ; Cross, SS ; Czene, K ; Daly, MB ; Devilee, P ; Doerk, T ; dos-Santos-Silva, I ; Dumont, M ; Durcan, L ; Dwek, M ; Eccles, DM ; Ekici, AB ; Eliassen, AH ; Ellberg, C ; Engel, C ; Eriksson, M ; Evans, DG ; Fasching, PA ; Figueroa, J ; Fletcher, O ; Flyger, H ; Foersti, A ; Fritschi, L ; Gabrielson, M ; Gago-Dominguez, M ; Gapstur, SM ; Garcia-Saenz, JA ; Gaudet, MM ; Georgoulias, V ; Giles, GG ; Gilyazova, IR ; Glendon, G ; Goldberg, MS ; Goldgar, DE ; Gonzalez-Neira, A ; Alnaes, GIG ; Grip, M ; Gronwald, J ; Grundy, A ; Guenel, P ; Haeberle, L ; Hahnen, E ; Haiman, CA ; Hakansson, N ; Hamann, U ; Hankinson, SE ; Harkness, EF ; Hart, SN ; He, W ; Hein, A ; Heyworth, J ; Hillemanns, P ; Hollestelle, A ; Hooning, MJ ; Hoover, RN ; Hopper, JL ; Howell, A ; Huang, G ; Humphreys, K ; Hunter, DJ ; Jakimovska, M ; Jakubowska, A ; Janni, W ; John, EM ; Johnson, N ; Jones, ME ; Jukkola-Vuorinen, A ; Jung, A ; Kaaks, R ; Kaczmarek, K ; Kataja, V ; Keeman, R ; Kerin, MJ ; Khusnutdinova, E ; Kiiski, J ; Knight, JA ; Ko, Y-D ; Kosma, V-M ; Koutros, S ; Kristensen, VN ; Kruger, U ; Kuehl, T ; Lambrechts, D ; Le Marchand, L ; Lee, E ; Lejbkowicz, F ; Lilyquist, J ; Lindblom, A ; Lindstrom, S ; Lissowska, J ; Lo, W-Y ; Loibl, S ; Long, J ; Lubinski, J ; Lux, MP ; MacInnis, RJ ; Maishman, T ; Makalic, E ; Kostovska, IM ; Mannermaa, A ; Manoukian, S ; Margolin, S ; Martens, JWM ; Martinez, ME ; Mavroudis, D ; McLean, C ; Meindl, A ; Menon, U ; Middha, P ; Miller, N ; Moreno, F ; Mulligan, AM ; Mulot, C ; Munoz-Garzon, VM ; Neuhausen, SL ; Nevanlinna, H ; Neven, P ; Newman, WG ; Nielsen, SF ; Nordestgaard, BG ; Norman, A ; Offit, K ; Olson, JE ; Olsson, H ; Orr, N ; Pankratz, VS ; Park-Simon, T-W ; Perez, JIA ; Perez-Barrios, C ; Peterlongo, P ; Peto, J ; Pinchev, M ; Plaseska-Karanfilska, D ; Polley, EC ; Prentice, R ; Presneau, N ; Prokofyeva, D ; Purrington, K ; Pylkas, K ; Rack, B ; Radice, P ; Rau-Murthy, R ; Rennert, G ; Rennert, HS ; Rhenius, V ; Robson, M ; Romero, A ; Ruddy, KJ ; Ruebner, M ; Saloustros, E ; Sandler, DP ; Sawyer, EJ ; Schmidt, DF ; Schmutzler, RK ; Schneeweiss, A ; Schoemaker, MJ ; Schumacher, F ; Schuermann, P ; Schwentner, L ; Scott, C ; Scott, RJ ; Seynaeve, C ; Shah, M ; Sherman, ME ; Shrubsole, MJ ; Shu, X-O ; Slager, S ; Smeets, A ; Sohn, C ; Soucy, P ; Southey, MC ; Spinelli, JJ ; Stegmaier, C ; Stone, J ; Swerdlow, AJ ; Tamimi, RM ; Tapper, WJ ; Taylor, JA ; Terry, MB ; Thoene, K ; Tollenaar, RAEM ; Tomlinson, I ; Truong, T ; Tzardi, M ; Ulmer, H-U ; Untch, M ; Vachon, CM ; van Veen, EM ; Vijai, J ; Weinberg, CR ; Wendt, C ; Whittemore, AS ; Wildiers, H ; Willett, W ; Winqvist, R ; Wolk, A ; Yang, XR ; Yannoukakos, D ; Zhang, Y ; Zheng, W ; Ziogas, A ; Clarke, C ; Balleine, R ; Baxter, R ; Braye, S ; Carpenter, J ; Dahlstrom, J ; Forbes, J ; Lee, CS ; Marsh, D ; Morey, A ; Pathmanathan, N ; Scott, R ; Simpson, P ; Spigelman, A ; Wilcken, N ; Yip, D ; Zeps, N ; Sexton, A ; Dobrovic, A ; Christian, A ; Trainer, A ; Fellows, A ; Shelling, A ; De Fazio, A ; Blackburn, A ; Crook, A ; Meiser, B ; Patterson, B ; Clarke, C ; Saunders, C ; Hunt, C ; Scott, C ; Amor, D ; Ortega, DG ; Marsh, D ; Edkins, E ; Salisbury, E ; Haan, E ; Macrea, F ; Farshid, G ; Lindeman, G ; Trench, G ; Mann, G ; Giles, G ; Gill, G ; Thorne, H ; Campbell, I ; Hickie, I ; Caldon, L ; Winship, I ; Cui, J ; Flanagan, J ; Kollias, J ; Visvader, J ; Taylor, J ; Burke, J ; Saunus, J ; Forbs, J ; Hopper, J ; Beesley, J ; Kirk, J ; French, J ; Tucker, K ; Wu, K ; Phillips, K ; Forrest, L ; Lipton, L ; Andrews, L ; Lobb, L ; Walker, L ; Kentwell, M ; Spurdle, M ; Cummings, M ; Gleeson, M ; Harris, M ; Jenkins, M ; Young, MA ; Delatycki, M ; Wallis, M ; Burgess, M ; Brown, M ; Southey, M ; Bogwitz, M ; Field, M ; Friedlander, M ; Gattas, M ; Saleh, M ; Aghmesheh, M ; Hayward, N ; Pachter, N ; Cohen, P ; Duijf, P ; James, P ; Simpson, P ; Fong, P ; Butow, P ; Williams, R ; Kefford, R ; Simard, J ; Balleine, R-M ; Dawson, S-J ; Lok, S ; O'connell, S ; Greening, S ; Nightingale, S ; Edwards, S ; Fox, S ; McLachlan, S-A ; Lakhani, S ; Dudding, T ; Antill, Y ; Sahlberg, KK ; Ottestad, L ; Karesen, R ; Schlichting, E ; Holmen, MM ; Sauer, T ; Haakensen, V ; Engebraten, O ; Naume, B ; Fossa, A ; Kiserud, CE ; Reinertsen, K ; Helland, A ; Riis, M ; Geisler, J ; Dunning, AM ; Thompson, DJ ; Chenevix-Trench, G ; Chang-Claude, J ; Schmidt, MK ; Hall, P ; Milne, RL ; Pharoah, PDP ; Antoniou, AC ; Chatterjee, N ; Kraft, P ; Garcia-Closas, M ; Easton, DF (CELL PRESS, 2019-01-03)
    Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
  • Item
    Thumbnail Image
    Development and validation of a targeted gene sequencing panel for application to disparate cancers
    McCabe, MJ ; Gauthier, M-EA ; Chan, C-L ; Thompson, TJ ; De Sousa, SMC ; Puttick, C ; Grady, JP ; Gayevskiy, V ; Tao, J ; Ying, K ; Cipponi, A ; Deng, N ; Swarbrick, A ; Thomas, ML ; kConFab, ; Lord, RV ; Johns, AL ; Kohonen-Corish, M ; O'Toole, SA ; Clark, J ; Mueller, SA ; Gupta, R ; McCormack, AI ; Dinger, ME ; Cowley, MJ (Nature Publishing Group, 2019-11-19)
    Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour's molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy.