Infrastructure Services - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    An interaction map of circulating metabolites, immune gene networks, and their genetic regulation
    Nath, AP ; Ritchie, SC ; Byars, SG ; Fearnley, LG ; Havulinna, AS ; Joensuu, A ; Kangas, AJ ; Soininen, P ; Wennerstrom, A ; Milani, L ; Metspalu, A ; Mannisto, S ; Wurtz, P ; Kettunen, J ; Raitoharju, E ; Kahonen, M ; Juonala, M ; Palotie, A ; Ala-Korpela, M ; Ripatti, S ; Lehtimaki, T ; Abraham, G ; Raitakari, O ; Salomaa, V ; Perola, M ; Inouye, M (BMC, 2017-08-01)
    BACKGROUND: Immunometabolism plays a central role in many cardiometabolic diseases. However, a robust map of immune-related gene networks in circulating human cells, their interactions with metabolites, and their genetic control is still lacking. Here, we integrate blood transcriptomic, metabolomic, and genomic profiles from two population-based cohorts (total N = 2168), including a subset of individuals with matched multi-omic data at 7-year follow-up. RESULTS: We identify topologically replicable gene networks enriched for diverse immune functions including cytotoxicity, viral response, B cell, platelet, neutrophil, and mast cell/basophil activity. These immune gene modules show complex patterns of association with 158 circulating metabolites, including lipoprotein subclasses, lipids, fatty acids, amino acids, small molecules, and CRP. Genome-wide scans for module expression quantitative trait loci (mQTLs) reveal five modules with mQTLs that have both cis and trans effects. The strongest mQTL is in ARHGEF3 (rs1354034) and affects a module enriched for platelet function, independent of platelet counts. Modules of mast cell/basophil and neutrophil function show temporally stable metabolite associations over 7-year follow-up, providing evidence that these modules and their constituent gene products may play central roles in metabolic inflammation. Furthermore, the strongest mQTL in ARHGEF3 also displays clear temporal stability, supporting widespread trans effects at this locus. CONCLUSIONS: This study provides a detailed map of natural variation at the blood immunometabolic interface and its genetic basis, and may facilitate subsequent studies to explain inter-individual variation in cardiometabolic disease.
  • Item
    Thumbnail Image
    Comparative analysis reveals a role for TGF-β in shaping the residency-related transcriptional signature in tissue-resident memory CD8+ T cells
    Nath, AP ; Braun, A ; Ritchie, SC ; Carbone, FR ; Mackay, LK ; Gebhardt, T ; Inouye, M ; Gangopadhyay, N (PUBLIC LIBRARY SCIENCE, 2019-02-11)
    Tissue-resident CD8+ memory T (TRM) cells are immune cells that permanently reside at tissue sites where they play an important role in providing rapid protection against reinfection. They are not only phenotypically and functionally distinct from their circulating memory counterparts, but also exhibit a unique transcriptional profile. To date, the local tissue signals required for their development and long-term residency are not well understood. So far, the best-characterised tissue-derived signal is transforming growth factor-β (TGF-β), which has been shown to promote the development of these cells within tissues. In this study, we aimed to determine to what extent the transcriptional signatures of TRM cells from multiple tissues reflects TGF-β imprinting. We activated murine CD8+ T cells, stimulated them in vitro by TGF-β, and profiled their transcriptomes using RNA-seq. Upon comparison, we identified a TGF-β-induced signature of differentially expressed genes between TGF-β-stimulated and -unstimulated cells. Next, we linked this in vitro TGF-β-induced signature to a previously identified in vivo TRM-specific gene set and found considerable (>50%) overlap between the two gene sets, thus showing that a substantial part of the TRM signature can be attributed to TGF-β signalling. Finally, gene set enrichment analysis further revealed that the altered gene signature following TGF-β exposure reflected transcriptional signatures found in TRM cells from both epithelial and non-epithelial tissues. In summary, these findings show that TGF-β has a broad footprint in establishing the residency-specific transcriptional profile of TRM cells, which is detectable in TRM cells from diverse tissues. They further suggest that constitutive TGF-β signaling might be involved for their long-term persistence at tissue sites.