Zoology - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Taxonomy, ecology and conservation genomics of North-Eastern Australian Earless Dragons (Agamidae: Tympanocryptis spp.)
    Chaplin, Kirilee ( 2018)
    Land clearing and modification of natural habitats is threatening biodiversity globally. In Australia, most native grassland habitats have been heavily modified for agriculture, including cropping and grazing. Grassland specialist species, including earless dragon lizards (Tympanocryptis spp.) in north-eastern Australia, are of conservation concern due to this continued habitat loss and fragmentation. However, the north-eastern Australian group of earless dragons (including the recently described T. condaminensis, T. wilsoni and T. pentalineata) are at significant risk, due to the presence of multiple undescribed cryptic Tympanocryptis lineages within this region. It is imperative that the taxonomy is resolved for these cryptic lineages of conservation concern, so conservation of these species may occur. One of the major challenges for taxonomists in recent times has been the species delimitation of morphologically cryptic taxa. The detection of distinct molecular lineages within cryptic genera has increased exponentially over the past decades with advances in genetic techniques. However, there are discrepancies in the rate and success of detection of cryptic taxa between studies using genetic methods and those using classic external morphology analyses. Therefore, novel integrative methods for species delimitation of cryptic taxa provide an avenue to incorporate multiple lines of evidence, including the application of osteological variation assessment where external morphological assessment fails to distinguish species. I develop a new pipeline integrating genomic data using single nucleotide polymorphisms (SNPs) and osteological geometric morphometric evidence from micro X-ray computed tomography (CT) imagery to assess variation between cryptic lineages for confident species delimitation. Here, I use this novel integrative pipeline to delimit cryptic lineages of earless dragons in north-eastern Australia. Prior to this study, there was evidence of three undescribed species of Tympanocryptis in this region. Using single mitochondrial and nuclear genes along with >8500 SNPs, I assess the evolutionary independence of the three target lineages and several closely related species. I then integrate these phylogenomic data with osteological cranial variation from CT imagery between lineages. I find that the very high levels of genomic differentiation between the three target lineages is also supported by significant osteological differences between lineages. By incorporating multiple lines of evidence for species delimitation, I provide strong support that the three cryptic lineages of Tympanocryptis in north-eastern Australia warrant taxonomic review. Earless dragons are found in most environments across the Australian continent, including a variety of ecological niches, from stony desert to tropical woodland or cracking clay savannah, although each species is often restricted to s certain habitat-type. I investigate the phylogenetic relationships among currently described earless dragons and newly delimited putative species with an assessment of broad biogeographic divisions, focussing on the north-eastern Australian Tympanocryptis group. I found significant structure across the north-eastern Australian lineages, with deep divergence between lineages occurring in the inland Great Artesian Basin region and more coastal Great Dividing Range. Regional diversification is estimated to have occurred in the late Miocene with subsequent Plio-Pleistocene speciations, and divergence and distributions of these species may therefore be reflective of the climate induced grassland-rainforest oscillations during this time. Based on these phylogenetic geographic relationships and the species delimitation from the integrative taxonomy approach, I describe three new species of Tympanocryptis from the cracking clay grasslands of the Darling Riverine Basin (T. darlingensis sp. nov.) and Queensland Central Highlands (T. hobsoni sp. nov.), and the stony open eucalypt woodlands on the Einasleigh Uplands (T. einasleighensis sp. nov.). The revision of these species provides further taxonomic clarity within the Tympanocryptis genus, and is an imperative step in the conservation of the north-eastern Australian earless dragons. These three putative Tympanocryptis species and the other three recently described earless dragons in north-eastern Australia inhabit restricted niches and areas with varying levels of habitat fragmentation and modification, and are therefore of significant conservation concern. However, little is known about these six north-eastern Australian earless dragon species. I utilise genomic methods to investigate population connectivity and genetic structure to determine management units. I then use species distribution modelling (SDM) to assess habitat suitability and fragmentation of each species. I integrate results of these analyses to form conclusions on the distribution and population structure of these earless dragons. I then discuss the major threatening processes and potential conservation strategies. This thesis uses several integrative approaches in resolving the taxonomy and forming conclusions on the conservation management of the north-eastern Australian Tympanocryptis species. This study successfully delimits cryptic lineages, explores the phylogenetic and geographic relationships between species, and provides baseline population genomics and ecological data to be used for conservation assessments and management decisions of earless dragons in north-eastern Australia.
  • Item
    Thumbnail Image
    Triple jeopardy in the tropics: assessing extinction risk in Australia's freshwater biodiversity hotspot
    Le Feuvre, Matthew Charles ( 2017)
    Freshwaters are the most degraded and imperiled ecosystem globally. Despite this high vulnerability, conservation efforts in freshwaters often lag behind those in terrestrial and marine ecosystems. In Australia this is particularly evident; despite high levels of river degradation, few freshwater fishes have had their conservation status assessed and only 14% of fishes are listed. Most listed species are restricted to southern Australia where rivers are particularly degraded. Northern Australia’s rivers are very diverse with many highly range restricted fishes. Yet almost no species are listed, despite potential vulnerability and an increasing number of threats across the north. Nowhere is this more evident than the Kimberley region in the north-west, where 49% of species are restricted to three or fewer rivers, and 10% are restricted to an area of <20 km2. Very little is known about the ecology of the region’s endemic fishes, so their vulnerability cannot be assessed. In my thesis I assess extinction risk in the freshwater fishes of the Kimberley using the triple jeopardy framework, that is whether they have small geographic ranges, low abundances and/or narrow ecological niches. Specifically I aim to (1) determine the relationships between range size, body size and abundance in all Australian freshwater fishes and (2) whether these relationships can be used to identify species at risk of extinction. I then determine whether (3) small ranged Kimberley endemics have narrow habitat, dietary or thermal niches compared to closely related widespread species and (4) synthesize these results to identify the fishes most at risk of extinction in the Kimberley. First, I test for a relationship between geographic range size and body size in all Australian freshwater fishes. I then investigate how this relationship varies with conservation status. I identify currently unlisted freshwater fishes that share traits with listed species and map their distribution, along with freshwater fish research effort, across Australia. I found a positive relationship between range size and body size. For a given body size, conservation listed species have a range less than one tenth the size of unlisted species. Based on this relationship, I identified 55 additional species that may be vulnerable to extinction. Most of these species are restricted to northern Australia where freshwater fishes are poorly known due to low research effort. Second, I test for abundance-geographic range size and abundance-body size relationships in Australian freshwater fishes and investigate how these relationships vary with conservation status. I identify and map currently unlisted freshwater fishes that are numerically rare, and combined with the results outlined above, map species with a double jeopardy risk of extinction. I found a negative body size-abundance relationship and no correlation between range size and abundance. Although relative abundance was a poor predictor of current conservation listing, I identified 59 consistently rare species. Twenty of these species (34%) currently suffer a double jeopardy risk of extinction and all were restricted to northern Australia. Third, using closely related widespread and endemic congeneric pairings of Kimberley freshwater fishes, I investigate whether endemic species have narrow dietary niches at any stage during their development. Using qualitative measures of habitat and presence/absence data, I also assess habitat specialization. Most range-restricted species have narrower ecological niches making them more vulnerable to extinction. Fourth I test the thermal performance of two pairs of congeneric species that are sympatric in the Drysdale River, with one widely distributed species and one range restricted species in each pair. In the Syncomistes pair, resting metabolic rate (RMR) was similar between species at low temperature but at higher temperatures the RMR of the widespread species was lower due to the onset of anaerobiosis. The range-restricted Syncomistes also has a higher critical thermal limit (CTL). In the Melanotaenia pair, the results were the opposite, with the widespread species having a higher CTL and RMR. The thermal performance of each species was related to their distribution within the catchment rather than their geographic range size, with the thermally sensitive species dominating the cooler, perennial downstream reaches, and the hardier species being more abundant in the hotter, more ephemeral upper catchment. Finally, I use the above information to assess the triple jeopardy extinction risk in the fishes of the Kimberley. Seventy-nine per cent of Kimberley endemic fishes are vulnerable on one or more axis, and two species had a triple jeopardy risk of extinction. The majority of vulnerable species are found in the remote rivers of the north-western Kimberley, but the most imperiled species (Hypseleotris kimberleyensis) is restricted to the heavily degraded Fitzroy River. My thesis shows that, despite fundamentally different environments, life histories and dispersal capacity, Australian freshwater fishes exhibit range size, body size and abundance relationships largely similar to terrestrial fauna. By identifying northern Australia as a hotspot of unrecognized vulnerable species, I provide an important context for guiding targeted research and informing future conservation management of Australia’s freshwater fishes. Combined with their small ranges and/or low abundance, the narrower niches of most Kimberley endemic species makes the region’s fishes particularly extinction prone. By identifying which endemic species are most vulnerable, my study provides specific information for targeting conservation efforts in the region. As the Kimberley and northern Australia more broadly are earmarked for major development, substantial effort is needed to effectively manage fish populations, design and manage developments with the environment as a major stakeholder and preserve remote rivers with high endemism and extinction risk. However, as northern Australia’s rivers are in good condition, with planning and research there is an excellent opportunity for proactive, properly informed freshwater conservation across the region.