School of Agriculture, Food and Ecosystem Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Nutritional modification of muscle long-chain omega-3 fatty acids in lambs : effects on growth, and composition and quality of meat
    Ponnampalam, Eric Nanthan ( 1999)
    Three experiments were conducted to investigate the effects of dietary supplements rich in omega-3 fatty acid on muscle omega-3 fatty acid deposition. The consequential effects on growth performance of lambs, colour and lipid oxidative stability of muscle over refrigerated display, and the sensory properties of cooked meat were also examined. A mixture of lucerne chaff : oaten chaff was used as basal diet, offered in different proportions were fed to lambs ad libitum (Expt. 1) or at 90% ad libitum (Expts. 2 and 3). Such mixtures of roughage diet support slow growth and provide a feed quality pattern similar to late spring to late summer pasture. In Expt. 1, fish meal (7%), canola meal (8%) and soymeal (7%) as natural feed supplements were compared in lambs fed low quality roughage diet. In Expt. 2, fish meal (9%) and oilseed supplements either in unprotected form (rapeseed - 7%) or in protected form (ground canola seed - 6%) were examined in lambs on medium quality roughage diet. Lipids and the proteins in the ground canola seed were treated (RUMENTEK) with aldehyde to protect them from the rumen microbial activity. Fish meal (9%), fish oil (1.5%), fish oil (1.5%) with sunflower meal protein (9%),' and sunflower meal protein alone (10.5%) (a commercial product of a protein supplement from RUMENTEK) were compared in lambs fed medium quality roughage diet in Expt. 3. Long-chain omega-3 fatty acids (eicosapentaenoic acid + docosahexaenoic acid) in muscle longissimus thoracis was increased modestly and markedly with fish meal and fish oil alone or with sunflower meal protein diet, respectively. These long-chain fatty acids were deposited in the muscle structural phospholipid rather than in storage triglycerides. All the diets mentioned above also significantly reduced omega-6:omega-3 fatty acid ratio in meat which is another beneficial effect, as the dietary recommendation in many countries has been to reduce the ratio of omega-6:omega-3 in human diet. Soymeal diet increased modestly both the omega-3 and omega-6 fatty acid content of muscle longissimus thoracis resulting in no differences in the omega-6:omega-3 ratio of the meat. A supplement of protected canola seed significantly increased the precursors of omega-6 (linoleic) and omega-3 (linolenic) but not the long-chain analogues such as arachidonic acid (omega-6) and eicosapentaenoic, docosahexaenoic acid (omega-3), respectively. The marked increase in linoleic acid content was in both triglyceride and phospholipid fractions of muscle longissimus thoracis but the modest increase in linolenic acid content was only in triglyceride fraction of meat. Supplements of canola meal used in Expt. 1, unprotected rapeseed used in Expt. 2 and protected sunflower meal protein used in Expt. 3 did not alter the fatty acid composition of muscle longissimus thoracis compared with lambs fed the control diet in that particular experiment. The increased level of long-chain omega-3 fatty acid and/or omega-6 fatty acid with the lipid supplements discussed above did not significantly affect the meat colour stability and lipid oxidative stability of fresh and vacuum packaged meat over the storage at refrigerated display. This suggests that the conditions under which the animals are grown (grazing vs grain fed or feedlot) and the species of animal are important in determining the oxidative stabilities of meat by altering the levels of muscle vitamin E concentrations at slaughter. The level of inclusion of lucerne chaff in the basal diet is an important factor in improving the redness of meat indicated by the a*-value; a higher level of lucerne chaff intake is more likely to be associated with increased intake of vitamin E. Thus colour and lipid oxidative stabilities of meat can be improved in red meat animals that are on poor quality diets by the inclusion of lucerne chaff in their diet. The sensory properties of cooked meat evaluated in the present study were not affected by the significant increase in muscle long-chain omega-3 fatty acid or omega-6 fatty acid content with fish oil and protected canola seed supplements, respectively. Addition of protected sunflower meal as a protein supplement together with fish oil significantly lowered the ratings of flavour and overall acceptability of meat compared with the control lambs. The results demonstrate that the common `lamby' and `muttony' flavour and aroma attributes were not hidden by any of the dietary treatments. These two characters associated with the species flavour and aroma were recognised by the panellists as a distinct attribute. Dry matter intake was not adversely affected by any of the lipid supplements used in the present study. Feed conversion efficiency was highest with fish meal diet on both low and medium quality roughage diets. At medium quality roughage-based diet, Feed conversion efficiency was modestly improved by protected canola seed diet but other supplements providing either natural (unprotected rapeseed) or protected protein (protected sunflower meal) did not support significant differences compared with basal diet. The significant increase in liveweight gain with fish meal diet reflected a significant increase in hot carcass weight compared with all other supplemented lambs either on low or on medium quality roughage diet. Protected lipid and protein offered by protected canola seed diet significantly and moderately increased liveweight gain and hot carcass weight from control diet but not different from unprotected rapeseed diet. The greatest muscle deposition was with the fish meal diet and is attributed mainly to the increased amount of protein and energy absorbed from the small intestine of those lambs. In addition to energy and protein absorption, the alteration of omega-3 polyunsaturated fatty acids in muscle membranes may have a further influence in lean meat production. In terms of carcass gain and intramuscular fat deposition of fishmeal and fish oil fed lambs, the results also lead to a hypothesis that modifying omega-3 polyunsaturated fatty acid of muscle membrane phospholipids may have an influence in improved muscle deposition in lambs by improving the insulin action at skeletal muscle site.
  • Item
    Thumbnail Image
    Physiological aspects of root growth of Eucalyptus pauciflora, subsp. pauciflora and Eucalyptus nitens
    Halter, Reese ( 1997)
    This thesis examined i) morphological and physiological effects of low soil temperatures on root growth of subalpine Eucalyptus pauciflora Sieber ex Sprengel subsp. pauciflora and montane Eucalyptus nitens (Deane & Maiden) Maiden, ii) determined the variability, and in particular the day/night variability, in root elongation, and iii) explored the physiological basis for such variability. A series of experiments were undertaken with seedlings of E. pauciflora and E. nitens grown at soil temperatures of 3, 7, and 13C, and where seedlings were transferred from one temperature to another. E. nitens grew faster than E. pauciflora at 7 and 13C, but E. pauciflora grew faster than E. nitens at 3C. E. pauciflora always produced greater total and white root length than E. nitens. E. nitens roots browned faster in response to lowering soil temperatures than E. pauciflora. The osmotic potential of the roots decreased with soil temperature, but more so in E. pauciflora than E. nitens. Proline was a prominent osmoregulant in roots of E. pauciflora and arginine in E. nitens roots. It is suggested that E. pauciflora is better adapted than E. nitens to root growth at low soil temperatures because it can keep roots white longer and can maintain lower root osmotic potentials. Root growth of E. pauciflora was examined for 31 months (December 1992 - June 1995) in a mature stand at an elevation of 1545 m on Mt Stirling, Victoria, Australia. Greater night than day root elongation was recorded from eight in situ rhizotrons during the summer and early autumn of 1993. Shoot growth was also monitored during part of this study (April 1994 - June 1995). It was found that root growth commenced in the spring at soil temperatures 5 1.5C, under 550 mm of snow, at least one month before the onset of shoot growth and continued at least two months longer that shoot growth during the autumn. A period of root dormancy for at least one month a year occurred in roots of E. pauciflora. The seasonal variability in root numbers of E. pauciflora appeared to be related mainly to soil temperature and to a lesser extent to soil water content. Moreover, there appeared to be some internal periodicity in root growth which was independent of the external environment on Mt Stirling. Greater night than day root elongation was recorded in seedlings of both eucalypts in a glasshouse. Root elongation rates were greatest in E. nitens, and root elongation of both eucalypt seedlings were greater than that of the mature E. pauciflora on Mt Stirling. The zones of day and night elongation were determined in root marking experiments. Histological studies of the zone of elongation showed that cell division occurred mainly during the day and cell elongation mainly at night. Night root elongation rates were increased by increasing day-time air temperatures, light-period, and light intensity; and by decreasing water stress during the night. The turgor pressure of the root tips was greater during the night than the day. It is suggested that the amount of root growth during the night is determined directly by turgor pressure during the night and indirectly by processes during the day (light duration and intensity, and temperature during the light period) which determine the extent of cell division during the day. A greater rate of cell division during the day will be translated into a greater rate of root elongation, especially in the night.