School of Agriculture, Food and Ecosystem Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
  • Item
    Thumbnail Image
    Photosynthetic responses to light, nitrogen, phosphorus and pruning of Eucalyptus in south-eastern Australia
    Turnbull, Tarryn Louise ( 2005)
    Eucalypts frequently grow faster after additions of fertiliser, but more slowly in the shade or following `green pruning'. The coupling of rates of growth to environmental factors is at least partly due to acclimation of photosynthetic processes. Photosynthesis rarely proceeds at maximum rates in natural environments as photosynthetic processes and the supply of basic requirements of photosynthesis (CO2, H20, light, phosphorus and nitrogen) vary at both short (minutes to hours) and longer (days to months) time scales. Currently we lack mechanistic explanations for how these variables, alone and in combination underpin changed growth rates in Eucalyptus. This study examined growth and photosynthetic characteristics in glasshouse-grown seedlings and field-grown trees of Eucalyptus species that are commonly planted for forestry and revegetation purposes in central Victoria. Acclimation to light (among seedlings and within canopies), nutrient availability (phosphorus and nitrogen) and increased sink-strength for photosynthates were the primary foci of the study. In each instance I examined distribution of leaf nutrients within a canopy and allocation of N to Rubisco and chlorophyll to assess the degree to which nutrients limit photosynthesis in Eucalyptus. A novel technique was introduced to quantify the allocation of inorganic phosphorus within cells (cytoplasm versus vacuole), followed by an assessment of inorganic phosphorus allocation in response to a long-term reduction in phosphorus supply. In all circumstances, rates of growth were responsive to environmental conditions. Growth responses were underpinned by altered patterns of biomass partitioning and changed leaf morphology more than by rates of photosynthesis per se. There was little difference in adaptive strategies implemented by seedlings and trees: both were oriented towards the accumulation of nutrients rather than increasing rates of photosynthesis. Photosynthesis was reduced by shading (among different plants and within the canopy of a tree) and reduced phosphorus supply whereas N had little effect on photosynthesis. Analysis of pools of inorganic P revealed that adequate supplies were maintained for photosynthetic processes regardless of P supply, therefore reduced photosynthesis follows, rather than leads, a more general leaf-level response to reduced P. Similarly, changed partitioning of nitrogen between Rubisco and chlorophyll was unnecessary as leaf nitrogen concentrations were consistently maintained at well above published minimum levels. Hence, photosynthesis was not up-regulated following increased nitrogen or phosphorus supply; instead excess nutrients were accumulated and used to support increased biomass. One exception was after defoliation, when up-regulation of photosynthesis was observed, presumably to ensure the demand for photosynthates could be met by a reduced leaf area. Sensitivity analyses consistently revealed variation in photosynthetic rates owed more to altered biochemical activity (e.g. Jmax and Vcmax) rather than stomatal conductance regardless of growth condition (glasshouse versus field). Hence, whilst Eucalyptus has considerable photosynthetic potential, faster rates of carbon fixation are only exhibited in the short-term. In part, this is due to the multiplicity of factors involved in `optimisation' of photosynthesis and their individual and collective responses to environmental conditions. In the long term however, increased canopy photosynthetic capacity follows only an increased photosynthetic area.
  • Item
    Thumbnail Image
    Grazing ecology and high producing dairy cows
    Stockdale, C. R (1948-) ( 2005)
    This body of work (82 papers in scientific journals and 2 books) encompasses two broad areas of work. They are 1) growth, nutritive value and management of pastures grazed by dairy cows (40 publications), and 2) supplements for grazing dairy cows, with a particular focus on responses associated with supplement use and digestion in the rumen (44 publications). These two areas of research are inextricably linked and, taken together, have been termed `Grazing Ecology'. Of the 84 publications included, the candidate was the senior or sole author of 67% of them. The chronological development of the work reported includes research on stocking rates reported in the early 1980's through to the development of Diet Check, a decision support tool incorporating much of the information generated during the previous two decades, in the early 2000's. The publications cover aspects of grazing management to optimise growth, persistence and nutritive value of irrigated annual and perennial pastures for dairy cows. Most of this research has incorporated some aspect of stocking rate, whether it be stocking rate per se in long term experiments or frequency and/or intensity of defoliation in shorter term experiments. The aim was to establish optimum grazing strategies that best effected the compromise of maximum intake of pasture of high nutritive value while satisfying the requirements for maintenance of pasture growth and persistence of a balance of desirable pasture species. The research allowed the definition of the intake and nutritive characteristics of pasture grazed by lactating dairy cows under a range of management conditions. At the same time, strategies to effectively feed supplements were investigated. When more than one feed is offered to dairy cows, associative effects play an important role in the eventual responses achieved. Balance of nutrients, particularly in the rumen, and substitution of supplement for pasture in the diet of grazing dairy cows, were the main aspects of the associative effect between feeds considered in the research reported here. Substitution can have a huge effect on the responses obtained from supplements, and the type of supplement, by influencing the balance of nutrients ingested into the rumen, affects the composition of the milk produced. Finally, some attempt has been made to draw much of the information on pasture management and supplementation of grazing dairy cows together for use by dairy farmers and their advisers, and to define gaps in knowledge. This has been done by reviewing the scientific literature, and by the use of modelling to provide simple tools for tactical decision making. Although the research was undertaken in northern Victoria, many of the results apply equally in other areas of the world where pasture constitutes a major proportion of the diet of dairy cows. Victoria currently produces more than 60% of Australia's milk, with northern Victoria producing more than 40% of that. The development of dairying in Victoria mirrors much of the progress of the research reported in this collection of scientific publications. Before 1982, dairy farming was almost totally based on grazed pastures and the use of pasture supplements (hay and silage). A severe drought occurred in 1982, which prompted a serious consideration of the use of supplements for lactating cows grazing pasture. Today, dairy systems in Victoria vary to a huge extent, with the energy provided by pasture ranging from 0 to 100%. Over this period, average milk production has increased, from about 3000L/cow per lactation to more than 5000L/cow. With a fine line separating profit and loss in dairy businesses that basically depend on the price received for manufactured products on overseas markets, both grazed pasture and supplements need to be used optimally. The challenge has been to provide information and tools to allow dairy farmers to achieve this objective. I believe that my research, particularly in relation to pasture intake, substitution and associative effects, has been instrumental in allowing pasture-based dairy farmers to continue to remain viable in Australia, and that many of the principles developed apply wherever pasture constitutes a significant proportion of a cow's diet.