School of Agriculture, Food and Ecosystem Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Antioxidant defence systems and symptom expression of wheat infected with Barley yellow dwarf virus and grown under elevated CO2
    Vandegeer, Rebecca Kate ( 2016)
    Barley yellow dwarf virus (BYDV) is regarded as the most significant viral pathogen of wheat worldwide. Symptoms produced during viral infection may have an interactive effect with environmental conditions expected under future anthropogenic climate change, including the rising atmospheric CO2 concentration. In particular, antioxidant defence systems – including the key non-enzymatic antioxidants ascorbate and glutathione – play an important role in regulating potentially harmful reactive oxygen species (ROS) produced during plant-virus interactions. However, the role of ascorbate and glutathione during systemic virus infection and growth under elevated CO2 (eCO2) is not well understood. This thesis investigated BYDV infection of three Australian wheat cultivars: the BYDV-susceptible spring wheat ‘Yitpi’, the susceptible winter wheat ‘Revenue’ and the resistant winter wheat ‘Manning’. In addition, the system was investigated under eCO2 to determine any interactions with infection on symptom expression and antioxidant defence capacity. Studies were performed within controlled environment chambers and the field at the Australian Grains Free Air CO2 Enrichment (AGFACE) facility located in the semi-arid grain-growing region of Horsham, Victoria, Australia. The response of plants to virus infection and eCO2 was assessed by measurement of the total concentration and redox state of ascorbate and glutathione. In addition, symptom expression was measured including growth, photosynthesis, stomatal conductance, leaf chlorophyll and nitrogen, and disease incidence and severity. BYDV infection was associated with an imbalance in antioxidative metabolism, which is an indicator of oxidative stress. Greater ROS turnover is the likely cause of the observed decrease in total ascorbate and glutathione and increase in the oxidised fraction of ascorbate after infection. In particular, a decrease in total ascorbate was the most consistent response to infection by all cultivars grown in both chambers and the field. The present research demonstrates that the observed imbalance in non-enzymatic antioxidant metabolism can be used as a marker for oxidative stress during systemic BYDV infection of wheat. The antioxidant response of both the BYDV-susceptible and resistant winter wheat cultivars was similar. Oxidative stress was not influenced by the putatively different virus concentration between these cultivars, but simply by virus infection alone. Infection was also associated with decreased biomass and height in both these cultivars and in both chamber and field studies, which indicates a sensitivity of the resistant cultivar to infection regardless of a putatively lower virus concentration. Despite few interactive effects between virus and eCO2 treatments on symptom expression, eCO2 altered the expression of yellowing disease symptoms in virus-infected plants, although not consistently between cultivars and environmental growing conditions. In addition, although there were significant changes to antioxidants in plants grown under eCO2, results were not consistent between studies. Research into this topic increases our understanding of how plants respond to virus infection and oxidative stress, and how plant-virus interactions may change under future eCO2. With the findings presented in this thesis, I have furthered the knowledge of this area by elucidating the response of ascorbate and glutathione during systemic wheat-BYDV interactions, and reinforced the potential use of these metabolites as markers of oxidative stress.