School of Agriculture, Food and Ecosystem Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 109
  • Item
    Thumbnail Image
    The Logic of Innovation: How Institutional Logics Shape Innovation in Australian Agriculture
    Kenny, Sean Nicholas ( 2023-12)
    This research aimed to improve how institutional dimensions of innovation in agriculture are described and enhance the understanding of their impact on innovation. By exploring systems perspectives on innovation within industrial and agricultural contexts, I explain how institutions are predominantly defined as functional and structural elements of innovation systems (IS). This demonstrates how innovation has been rendered technical in agriculture, and I argue for an institutional turn to rebalance IS towards the social and political. By applying a new institutionalist lens, I expand on the current view of institutions to define them as socially constructed, recursive, material, symbolic and political. I use this expanded definition to highlight the lack of approaches for institutional analysis in agricultural innovation systems (AIS) and introduce the institutional logics (IL) perspective as a basis for my research design. This research is a case study of the influence IL have on managing nutrient pollution in agriculture. It draws data from two contexts that have grappled with this issue for decades, namely the Australian sugarcane industry and agriculture in the Netherlands. My analysis centred on the discourse surrounding each context, drawing on data from unstructured interviews with 22 innovation actors, 119 submissions to an Australian senate inquiry, and 59 documents. Interviews covered actors in the policy, program management, intermediary and farming practices, while documents included those addressing the cases technical, policy and strategy dimensions. My analytical framework draws on the foundational elements of IL and seeks to describe the interrelationship between problem framing, chosen theories of action and justifications used to legitimise action. This was used to develop an initial position on IL observed in the case. I then used qualitative content analysis of data from two discursive hotspots to explore how IL impact innovation activity and performance. Through this process, I describe a dominant discourse within the Australian context anchored in what I label a scientific logic. While this logic dominates the discourse, another competing logic drives an alternate discourse. This I label the experiential logic, which is characterised by a contrasting relativism that questions every aspect of the scientific logic. This resulted in a polarised problem domain leading to diminished action to address the problem and limited progress towards nutrient pollution targets. In the Netherlands, the discourse revealed a dominant societal logic that frames the problem legally and justifies action on the grounds of human and ecosystem health. This precipitates an instrumental theory of action that continually layers expectations for actors in agriculture around compliance with various standards and limits. Sitting behind this instrumental facade was a social process built over centuries and focused on a pragmatic approach to building consensus. This resulted in a fusion of the instrumental approach to defining what must change with a social process of settling on how to achieve this. The polarisation observed in the Australian case was absent in the Netherlands; however, questions exist as to whether the consensus based approach to decision making can withstand the various social, political and functional pressures facing Dutch society. Synthesis of my findings showed how limited awareness of institutional processes, epistemological divergence and weak legal frameworks contribute to poor innovation performance in the Australian context. These insights demonstrate a divergence from the dominant technical and economic interpretations of innovation performance in agriculture and challenge the functional and structural black box approach to representing institutions within AIS. This has implications for the relative emphasis placed upon institutional analysis within AIS. Subsequently, this highlights the need for innovation actors to engage with the institutional dimensions of innovation if progress is to be made in complex problem domains. I propose an enhanced role for innovation brokers to facilitate this process and a representation of AIS that better captures this institutional turn.
  • Item
    Thumbnail Image
    Mapping for Sustainable Livelihoods: using cultural mapping to clarify community shared visions and livelihood options in natural and cultural resource planning and development
    Field, Jennifer Joi ( 2023-04)
    Abstract The development of sustainable livelihoods and sustainable growth is a key challenge for society. While there is often the best of intent, many opportunities for sustainable development are not realised. The goal of this research was to understand the reasons for overlooked or lost opportunities for sustainable livelihoods and sustainable growth. The research was undertaken in the Kimberley region, a contested landscape in the north of Western Australia. This region includes a diverse range of industry, government and community stakeholders, all with vested interests in its natural and cultural resources. The region is rich in resources, and Indigenous people’s intergenerational knowledge of the area is keenly sought after from sectors such as tourism, mining, national parks, education, health and environment. However, despite the amount of private investment and government funding for development that is poured into the area, it results in little change for its at-risk Indigenous communities of the Kimberley despite the constant demand from academic, industry and government sectors to engage with them and address their needs. The intent was to learn their perspectives about the constraints when engaging with communities and to identify opportunities for improving interactions and more sustainable outcomes for all parties. The study explored research questions related to this goal using personal ethnography, interviews, a workshop and tailored cultural mapping practice, and engaged with a large range of sector leaders. Another focus was to explore an approach to sharing of knowledge between Indigenous communities and the many stakeholders they engage with, and the benefits that might come from this. A bespoke designed method of cultural mapping was refined and accredited and used as a research framework. Bespoke is when a training method is designed to address a real-world issue or concern. This method was used to design the research questions and a workshop involving interviewees. This method was also used to develop multi sector engagement scenarios that make sustainable livelihoods, and the constraints to achieving them, more visible. The study found livelihood and growth opportunities were missed because: 1. cultural knowledge was not specifically recognised to be of value in sustainable development; 2. time poor community leaders cannot fully evaluate potential opportunities arising from the huge amount of investment; 3. Kimberley Indigenous communities do not feel heard or included in culturally appropriate ways in the large-scale development being implemented by others; and 4. knowledge collected from communities rarely had any benefits for the communities, yet that knowledge benefited those collecting it. Further, the study found that development proponents from the public and private sectors predominantly work in silos. The consequence for communities is the effort expected when each stakeholder knocks on their door to ‘consult’ or gather information. This commitment takes time and effort that communities could invest into their own initiatives. More broadly, these findings indicate that community livelihood opportunities are not being realised because culture, and its complexity, are being ignored, which points to the need for including culture in a more practical and realistic way into the existing sustainable development paradigms. Culture remains ambiguous in these paradigms, indicating the lack of clarity that underpins efforts to incorporate it. As a result of this disconnection, decision makers and investors fail to acknowledge the urgency of reversing the loss of cultural knowledge. This knowledge is potentially critical to addressing major challenges such as climate change, language loss, and loss of biodiversity. These findings, and findings of prior studies underpinning this one, show that for communities to have the chance to achieve sustainable livelihoods, their single most important cultural asset, their practices and knowledge of their region and its natural environments, must be protected and acknowledged. These findings have wider implications for achieving sustainable livelihood and development objectives in Indigenous communities across Australia and in many other communities around the world. It is recommended that ‘culture’ be incorporated as the first pillar of the sustainable development paradigm, and become a standalone Sustainable Development Goal
  • Item
    Thumbnail Image
    Climate and climate change effects on carbon uptake and storage in Australia’s wooded ecosystems
    Bennett, Alison Clare ( 2022)
    Forest ecosystems are central to the land carbon sector due to their capacity to store and sequester carbon. Many studies have demonstrated that forest carbon uptake and storage is strongly dependent upon climatic conditions. However, the effects of climate on forest carbon uptake and storage in different biomes are still uncertain. Climate change may alter carbon dynamics within forest ecosystems through the direct effects of increased temperature, increased CO2 concentration and changing precipitation regimes. Yet forests may also adjust to changing climate through mechanisms such as thermal acclimation. In this thesis I used three modelling approaches (machine learning, boundary-line analysis, and a land-surface model) to examine how climate of the recent past, present, and future affect carbon uptake (as Gross Primary Productivity, GPP) and storage (as above-ground biomass, AGB) in Australian forests. Furthermore, I explored how current GPP adjusted to thermal regimes and how acclimation affected carbon uptake and storage in the future. In my first quantitative chapter (Chapter 2), I explored relationships between carbon storage (as AGB) with climate and soil in Australian forests across the continent. I developed RandomForest models with climate-only, soil-only, or climate plus soil variables to examine whether climate or soils are better predictors of forest biomass at the continental scale and to identify the most important predictor variables. In this chapter I demonstrated that climate (particularly temperature and the timing of precipitation) was more important than soil for explaining variation in AGB across Australia’s forests. In Chapter 3, I used boundary-line analysis to examine the ecosystem temperature response of carbon uptake (as GPP) in 17 wooded ecosystems representing five distinct ecoregions. These responses were represented as a convex parabolic curve that was similar in shape among ecoregions – narrow in tropical forests and broader in woodlands. I then derived the thermal optima of GPP (Topt) from these curves for each ecosystem and examined the relationship between Topt and mean air temperatures across sites. My analysis revealed a strong positive linear relationship between Topt and mean air temperature that indicated GPP was optimised to the present climate. Finally, in Chapter 4, I predicted how carbon uptake and storage will be affected by climate change in these 17 ecosystems and examined the effects of thermal acclimation of photosynthesis on these predictions. I used the CABLE-POP land surface model adapted with thermal acclimation of photosynthetic functions and forced with climate projections from the extreme climate scenario RCP8.5. My simulations indicated that increased temperature, CO2 concentration and changed precipitation patterns will have a positive effect on future carbon uptake and storage in the majority of the 17 ecosystems. Furthermore, thermal acclimation of photosynthesis is likely to enhance this effect in tropical ecosystems. My results confirm that carbon uptake and storage in Australian forests are fundamentally linked to temperature and precipitation regimes, and that these forests may be capable of adjusting to climatic conditions. My research indicates that the direct effects of climate change are likely to enhance the storage and sink capacity of Australia’s forests in the future. While I did not assess the indirect effects of climate change on carbon cycles through changes to disturbance regimes, overall, my thesis suggests that carbon uptake and above-ground biomass carbon stores in Australia’s forests are likely to be resilient to climate change.
  • Item
    Thumbnail Image
    Making the connection between history, agricultural diversity and place: the story of Victorian apples
    Christensen, Johanna Annelie ( 2016)
    Apple growing practices are embedded in a productivist mentality aiming for ever higher efficiency and productivity. And while the climate change impacts are to a large extent known, there is little attention given to the coupling of the social and the ecological effects. I use apple growing as a case study to explore the relationship between place, biodiversity and rural change in Victoria. My research is based on historical research; including an analysis of the Museum Victoria’s collection of wax apple models, and in-depth interviews with orchardists. By drawing on environmental history, social-ecological systems thinking and Bourdieu's theory of practice, I highlight the importance of a systems perspective and inform it by emphasis on the critical role of underlying power structures and individual dispositions, or the habitus, of the growers. These dispositions have been shaped and internalised by the growers’ histories and their physical surroundings. Orchardists have been able to respond to intensifying production requirements by utilizing technologies and scientific nous to keep up with the continuous aim for efficiency. Growers are caught up in a self-reinforcing cycle of satisfying the demand for perfect apples by adopting expensive techno-scientific approaches to enable ever more intensive production. The symbolic violence and amplified biophysical pressure orchardists experience has driven many to despair; resulting in a significant decline in small scale apple growing businesses over the last decade. I offer some suggestions for government policy and support measures and argue that any services or support programs need to be tailored to the appropriate level and need of each orchard business and the individuals who are involved. My analysis shows that those growers, who engage more closely with their biophysical place as well as their history and identity as apple growers in that place are (re-)creating another version of what it means to be an apple grower. In some cases this is resulting in resistance to the vortex of agricultural productivism that has been the basis of their existence for many generations.
  • Item
    Thumbnail Image
    Studies of Ascochyta rabiei in Australia
    Pradhan, Prashanti ( 2005)
    Ascochyta rabiei (teleomorph: Didymella rabiei) which causes ascochyta blight is the most serious disease of chickpea (Cicer arietinum) in Australia as it causes significant losses in crop yield and quality. Although A. rabiei is heterothallic and genetically diverse elsewhere in the world, a study carried out on Australian isolates collected between 1995 and 2000 identified only one mating type and a low level of genetic diversity within the Australian A. rabiei population. In 2002, ascospores of Didymella rabiei, the sexual state of A. rabiei, were trapped in a discharge chamber, from chickpea stubble naturally infected with ascochyta blight in Western Australia. Examination of the stubble revealed pseudothecia typical of Didymella rabiei. The reported presence of the teleomorph in Western Australia indicated that the second mating type had been introduced into Australia or that the pathogen was capable of a low level of homothallic compatibility, previously undetected. The aims of this research were, to undertake a new survey of Australian A. rabiei isolates, to test for the presence of the second mating type, to determine if there has been a change in the diversity of the Australian population and to investigate if pathogenic variability was displayed among isolates. Sixty-seven isolates collected from chickpea fields in South Australia, New South Wales, Queensland, Victoria and Western Australia during the 2003 cropping season were single spored and confirmed as A. rabiei using a PCR test. The isolates were typed for mating type using MAT gene specific PCR primers and compared with tester isolates from USA. This test revealed that all the 67 isolates belonged to mating type 2 (MAT 1-2), thus, the presence of mating type 1 (MAT 1-1) in Australia could not be confirmed. Sequence Tagged Micro Satellite (STMS) markers were used to examine the genetic diversity of the A. rabiei isolates. The isolates were assessed for allelic variation at 19 microsatellite loci, each of which amplified a single locus. Seven of the loci were polymorphic across all the 67 isolates, while the remaining twelve were monomorphic. Based on the allele profiles at the seven polymorphic loci, 19 distinct A. rabiei haplotypes were identified with a total of 33 alleles. One haplotype constituted 35.8 % of the population and was found in the collections from South Australia, New South Wales, Queensland and Victoria. Cluster analysis did not show a clear distinction between isolates based on the state from which they were collected. Polymorphism across the 19 microsatellite loci revealed a slight elevation in diversity in the 2003-2004 population (Ht = 0.07; compared to 0.02 in the 1995 to 2000 collection) and an increase in the number of haplotypes compared with that detected in the previous study of Australian isolates. To examine the pathogenic variability of the Australian population of A. rabiei, nine isolates were inoculated on five chickpea differentials, ranging from highly susceptible to resistant, under controlled conditions optimal for A. rabiei growth and infection. Eight of the isolates were virulent on the susceptible and intermediate chickpea cultivars but not the resistant cultivar and one isolate was only virulent on the susceptible cultivar. Based on these results the isolates were classified into two pathotype groups. The results obtained from the study of the population structure and the pathogenic variability of A. rabiei in Australia will enable the Australian chickpea breeders to understand the A. rabiei population better for formulating management and breeding strategies.
  • Item
  • Item
    Thumbnail Image
    Effects of adding nutrients on soil chemistry and tree growth in native Eucalyptus forests of south-eastern Australia
    Severino, Dean Christopher ( 2007)
    The decreasing area available for timber extraction in south-eastern Australia, due largely to social pressure to reserve greater areas of forest, has led to the consideration of fertiliser-application to increase wood output from the remaining available forest. Potentially deleterious effects of fertilising on water quality must be assessed before implementation on a wide scale. This is in accordance with relevant forest management policies. This study examined the effects of applying fertilisers containing nitrogen and phosphorus, on soil and soil-water chemistry in two pole-sized stands of mixed Eucalyptus spp in the Wombat Forest, in the Midlands Forest Management Area, Victoria, Australia. The findings are synthesised and discussed in relation to management of regenerating mixed-eucalypt forests in south-eastern Australia. Fertiliser treatments were none (R); 400 kg N ha-1 as ammonium-sulphate (N); or 400 kg ha-1 plus 202 kg P ha-1 as triple superphosphate coated with 10% sulphur (NP). It was calculated that incidental additions of S were 1371 kg ha -1 (N treatments), and 1696 kg ha-1 (NP treatments). It was expected that P would be principally adsorbed on soil surfaces; N immobilised in the soil organic pool and that metallic cations would enter the soil solution to varying degrees. Fertiliser-addition increased both plot-basal-area (BA) growth and the rate of stand self-thinning. In 3.8 years, BA in reference (R) plots at two sites increased by 7.3% and 23.4%. Where N alone was added, BA increased by 14.2% and 27.1%, while in NP plots BA increased by 17.1% and 42.7% respectively. Mortality was 9% in untreated plots compared to 14% in NP plots. Estimated increases in biomass growth equated to additional above-ground nutrient accumulation of 0.4 to 1.5 kg ha-1 of P, and 5.5 to 20.8 kg ha-1 of N. This represented only 0.2 to 0.7% of added P, and 1.4 to 5.2% of added N. Soil solution was extracted from 10 and 50 cm with porous-ceramic-cup tension-lysimeters (-0.6 kPa). Concentrations of P and N were low both before and after adding fertiliser. Across all treatments the maximum median PO43- concentration in soil-water at 50 cm was 0.12 ppm (mean 0.28 ppm). Typically PO43- concentrations were not higher than 0.03 ppm. The 400 kg ha-1 of added N was rapidly immobilised in the soil organic pool. The greatest mean NH4' concentration from a single sampling occasion was 1.1 ppm. The mean NO3 concentration at 50 cm was never higher than 0.26 ppm. After adding N in fertiliser the proportion of NO3- relative to NH4* in soil-water increased and was correlated with decreasing soil-water pH. Less than 1% of added P and N was recovered from soil solution at 50 cm. The largest pool of added P recovered was PO43- adsorbed to soil between 0 and 20 cm, due to the soil adsorption capacity being well in excess of the applied 202 kg P ha-1. Phosphate desorption using sequential extractions with a mild acid extractant (0.3M NH4F, 0.1M HCI) recovered between 25% and 116% of added P. Differences were attributed to both the amount of P added and the effect of time since treatment at different sites. Soil disturbance during sampler installation was found to be more likely to raise soil-water P concentrations at 50 cm than would adding up to 202 kg P ha-1. Among the ions in solution. SO42- and CI' were the dominant anions while Cat+ dominated the cation chemistry. In untreated forest 5042- in soil-water ranged from 7.7 to 16.0 ppm at 10 cm and 7.9 to 12.2 ppm at 50 cm. In fertilised plots up to 100.5 ppm SO42 was measured in soil-water at 50 cm depth. In the N treatment at 50 cm, SO42- in soil-water accounted for 9.4 % of applied S. compared to 14.0 % in NP. In untreated forest, soil-water Cl- and SO42- accounted for over 98% of the total soil-water anions, in roughly equal proportions at 10 cm, and CI- slightly higher at 50 cm. Following fertiliser-application soil-water pH at 10 cm fell from 6.3 in R to as low as 4.81 (N) and 4.45 (NP). At 50 cm pH never dropped below 6 and there were no visible departures from reference concentrations. Relative activities of K+ and Mg2+ in solution increased with decreasing pH, indicating increased leaching potential. Sulphate in soil-water increased total anion charge further in NP than in N. Total charge (cmolc L-1) for cations followed anions. A slight deficit in anion charge was likely due to the unquantified contribution of organic anions. These results confirm that despite the quantity of fertilisers added in this trial being double likely operational quantities, the forest and associated soils had the capacity to retain these nutrients through a variety of processes. The study validates the environmental sustainability of proposed intensive management practices including fertiliser-application in this forest type. It also emphasises the importance of understanding fundamental forest nutrient cycling processes when aiming to carry out intensive forest management practices in an environmentally sensitive manner.
  • Item
    Thumbnail Image
    Effects of organic applicants in a southern Victorian vineyard
    Lakey, Vincent G ( 2007)
    Mulch is a material applied to the surface of the soil to reduce weed growth and reduce soil moisture loss through evaporation from the soil surface. The use of organic mulches will alter the soil environment. This alteration may include reducing soil temperature fluctuations, increasing soil organic matter, increasing soil microflora populations modifying soil chemical properties and increasing soil moisture retention. An experiment was conducted to compare composted green waste mulch and barley straw mulch with herbicide as alternative means of maintaining the undervine strip in a cool climate vineyard. Plant and soil responses to the different undervine treatments were monitored. Grapevine budburst was retarded, however, by the fourth week of vine growth there were no observable differences in grapevine growth stage. Both mulches stimulated grapevine growth and increased yield, with the compost mulch increasing vegetative growth with respect to fruit yield. The fruit quality parameters juice pH and titratable acidity were not significantly altered by the different undervine treatments. In the second year of the experiment the juice soluble solids were lower on the straw mulched grapevines. The compost mulch increased soil pH and carbon levels. The straw mulch improved soil water retention and the mass of soil fungal hyphae. Both mulches increased soil cation exchange capacity. The straw mulch increased soil exchangeable Mg to a greater extent than was predicted from straw nutrient content. The significant variations seen in soil cation content under the mulch treatments were not observed in the tissue analysis. Mulch can be used in a cool climate vineyard to increased yield without deleterious side effects.
  • Item
  • Item