School of Agriculture, Food and Ecosystem Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Biochemical and physiological mechanisms of legume nitrogen fixation under higher atmospheric CO2 concentrations
    Parvin, Shahnaj ( 2019)
    Atmospheric CO2 concentration ([CO2]) is expected to rise from a current level of ~400 to 550 µmol mol-1 by 2050. It is well established that elevated [CO2] enhances plant growth and yield. However, the stimulation of plant growth at elevated [CO2] requires additional nitrogen (N) and prolonged exposure to elevated [CO2] potentially risks N limitation. Legumes can overcome such limitations by fixing aerial N. Previous studies under Free Air CO2 Enrichment (FACE) have shown that elevated [CO2] can stimulate N2 fixation, but it is unknown to what extent this applies to dryland Mediterranean environments or what impact environmental interactions have. Legumes grown in dryland environments frequently experience terminal drought accompanied by high temperature during reproductive phases. It has been suggested that elevated [CO2] delays the effect of drought by conserving soil water, maintaining N2 fixation mechanisms for longer under drought. This thesis addresses this gap by investigating the growth and N economy of three legumes (lentil, field pea and faba bean) in a FACE facility in a semi-arid environment where seasonal and experimentally controlled drought was imposed. In addition to N2 fixation itself, the supply and translocation of N compounds to the maturing grain is another point of interest, because it is crucial in maintaining grain N concentration. This thesis investigated N2 fixation, remobilization and grain quality of dryland legumes under predicted future e[CO2] atmosphere conditions, including interactions with drought, heat waves, and genotypes. Free Air CO2 Enrichment technology was used to simulate future growing conditions in the field with target [CO2] as expected by the middle of this century. Elevated [CO2] stimulated N2 fixation through increased nodule number, nodule biomass, and nodule activity to a greater extent under unstressed conditions. Soil water savings under elevated [CO2] were only temporary, so that drought reduced nodule activity due to lower C/sucrose supply and therefore decreased N2 fixation. Consequently, elevated [CO2] was found to stimulate N2 fixation of all three species of legumes, but this effect was smaller under drought or heat stress. The decrease of N2 fixation under drought caused depletion of grain N concentration under elevated [CO2]. In contrast, when soil water was sufficient, N2 fixation continued throughout the grain filling period, and grain N concentration was maintained under elevated [CO2]. Traits that allow N2 fixation for longer throughout the growing season, e. g. by exploiting potential water savings mechanisms under elevated [CO2], may confer benefits under future climatic conditions. Findings of this study are now available to underpin new strategies for improvement of the N2 fixation potential of legumes as atmospheric [CO2] continues to increase in the future.
  • Item
    Thumbnail Image
    Functional aspects of root and leaf development in dryland crop water use under elevated CO2
    Uddin, Shihab ( 2018)
    Atmospheric CO2 concentration ([CO2]) is rising due to anthropogenic activities and is expected to reach ~550 μmol mol-1 by 2050 and exceed ~700 μmol mol-1 by the end of this century. As the main substrate of photosynthesis, this rising [CO2] has direct implications for plant metabolism, such as stimulating net photosynthetic CO2 assimilation rate (Anet) in C3 crops and leading to greater biomass production and yield through the so-called ‘CO2 fertilisation effect’. In addition, elevated [CO2] (e[CO2]) lowers stomatal conductance (gs), and thus may reduce transpiration rate. Increased assimilation and lower transpiration result in higher leaf-level water use efficiency, which lead to the assumption that crop water use will be lower under e[CO2]. On the other hand, e[CO2] increases leaf area, which tends to increase transpiration and therefore canopy water use. Therefore, the net response of crop water use to e[CO2] is dependent on the balance between e[CO2]-induced reduction of gs and e[CO2]-induced stimulation of transpiring leaf area. These responses under e[CO2] are further complicated by other environmental variables and growing conditions. The response of crop water use to e[CO2] will be of particular interest for dryland agriculture, where water is nearly always the most limiting factor for crop production. This project investigated the functional aspects of root and leaf development on water use of dryland wheat (Triticum aestivum L.) and canola (Brassica napus L.) under a future e[CO2] using experiments with different water and nitrogen regimes, soil types and cultivars. Free Air CO2 Enrichment (FACE) technology was used to simulate future growing conditions in the field with a target atmospheric [CO2] expected by the middle of this century. This was supplemented by glasshouse studies to investigate crop physiological response to e[CO2] under more controlled conditions. Increased leaf-level water use efficiency under e[CO2] stimulated biomass and yield per unit water used, but this commonly resulted in little change in seasonal water use in this dryland, terminal drought environment. However, the dynamics of crop water use during the growing season varied depending on [CO2], whereby early in the season greater stimulation of leaf growth counteracted the increased leaf-level water use efficiency and resulted in greater water use under e[CO2] relative to a[CO2]. Under field conditions, the accumulated water use at the end of the season was then similar both under a[CO2] and e[CO2], pointing to the overriding effect of the seasonal conditions. Under water-limited conditions, e[CO2]-induced stimulation of root growth especially in the deeper soil layers maintained plant physiological processes by improving access to deeper soil water. This greater assimilation rate later in the season ensured better assimilate supply to the developing grains, which resulted in better yield benefits from the ‘CO2 fertilisation effect’. In addition, this thesis shows that interactions between growing conditions (experimental water and N regimes) and expression of genotypic traits (cultivars contrasting in vigour, transpiration efficiency and N use efficiency) play a decisive role in determining potential biomass and yield benefits from rising [CO2]. Observed genotypic variability in response to e[CO2] suggests a potential breeding opportunity to maximise the benefit from ‘CO2 fertilisation effect’.