School of Agriculture, Food and Ecosystem Sciences - Theses

Permanent URI for this collection

Search Results

Now showing 1 - 1 of 1
  • Item
    Thumbnail Image
    Chemical treatment of wood and its effect on wood/water interactions
    Hann, Jeffrey Albert ( 1999)
    Wood-water interactions including the effect of grain orientation, sample size and water potential in Pinus radiata D.Don were investigated. The influence of various chemical treatments on the wood-water interaction was also evaluated. The uptake of moisture by wood soaking in water was determined using the water soak method developed by Rowell and Banks (1985). Treatments with surfactants such as ammoniacal copper-didecyldimethylammonium chloride (DDAC-ACQ) and linoleate salts increased the initial uptake rates of the wafers, whilst treatment with copper chrome arsenic (CCA), linseed oil (LO) and a combined CCA/LO treatment reduced uptakes of moisture. The length of time used to assess the water repellent effectiveness (WRE) was found to be crucial to the test, with most of the reduction in WRE occurring in the first 15 minutes of soaking. Exposure of wax treated wafers to weathering indicated an initial gradual reduction in efficacy, which decreased more rapidly as the length of exposure time increased Tests on the effectiveness of different wood coatings subjected to high humidity illustrated the importance of a film with low permeability and some elasticity. Wood blocks coated with resorcinol-formaldehyde resin initially inhibited moisture ingress, but failed after prolonged exposure. An extra coat increased the time required before failure. Coating the wood wafer with a silicone resin slightly reduced the uptake of water into the wafer. However, this resin was more permeable than the resorcinol-formaldehyde resin and was not as efficacious. The effect of various oil treatments on the uptake of water vapour indicated that the distribution of the oil is critical to inhibiting vapour uptake. No significant difference was found between the moisture uptake of hardwood and softwood stakes. Treatment with trimethylborate (TMB), DDAC-ACQ and CCA had no significant effect on the extent of vapour taken up by the wood. An experiment designed to investigate the importance of sample size when assessing wood performance was carried out using matched samples of treated and untreated quartersawn and flatsawn Pines radiata D.Don. It was found that samples treated with DDAC-ACQ and exposed outdoors experienced a greater flux in moisture content compared to controls. CCA reduced the extent of moisture uptake, with the incorporation of oil further enhancing the short term weathering performance. Quartersawn wood exhibited a smaller moisture flux than the flatsawn timber.However, the performance of CCA/Oil treated quartersawn wood was only marginally better than the quartersawn controls. Laboratory trials gave an identical treatment ranking as the exterior trial; however the use of the smaller sample size was identified as being inappropriate for the assessment of check formation in the timber. A sample size effect was demonstrated when assessing the efficacy of treatments by the water soak method. A treatment gradient could be demonstrated when whole stakes were impregnated with CCA and linseed oil by a two-stage process. The test indicated that the significance of improvements in the water repellency of treated wafers diminishes when larger sized samples are investigated. The effect of soil water availability on wood moisture content was determined for untreated hardwood and softwood sticks. At low soil moisture contents, hardwood sticks were found to be significantly more saturated than their softwood counterparts. At higher soil water contents (100% water holding capacity (WHC)) the performance of the two species of wood became less significant. Chemical treatment was found to have a significant effect on reducing wood moisture levels when free water was available in the soil. Linseed oil was responsible for a significant reduction in moisture uptake, by blocking the pathways for water uptake as well as by decreasing the void volume available in the wood for water to occupy. Incorporation of a drying agent did not improve the quality of the film formed by the linseed oil as no significant change in water repellent performance was identified. The uptake and movement of water through a horticultural post was simulated using a procedure described by Baines and Levy (1979). The wick action of heartwood and sapwood stakes of Pinus radiata D.Don was investigated with distinct moisture distribution and behaviours found. Heartwood, being less permeable, showed a reduction in the volume of vapour that moved through the wood, as well as a much lower stake moisture content compared to the sapwood. This difference was most pronounced above the air/water interface and helps to explain the difference in decay resistance exhibited by the two wood types. End sealing the stakes with silicone resin was found to have no significant effect on the wick action of the stake. Lumen filling treatments with wax, oil and alkyd resins were found to significantly alter the wick action of the stakes. Treatment with low concentrations of surface active compounds such as DDAC-ACQ and linoleate soaps were found to increase the rate of water uptake. At higher concentrations the presence of the surfactant increased the hydrophobicity of the wood and reduced moisture uptake. Biological testing using a fungal cellar determined that treatment of the wood with CCA/LO, CCA, DDAC-ACQ/LO, LO and DDAC-ACQ significantly improved the resistance of the wood to decay. The incorporation of linseed oil did not cause a significant improvement to the decay resistance of the stakes over the trial period