Paediatrics (RCH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 26
  • Item
    No Preview Available
    Cord blood immune profile: Associations with higher prenatal plastic chemical levels
    Eisner, A ; Gao, Y ; Collier, F ; Drummond, K ; Thomson, S ; Burgner, D ; Vuillermin, P ; Tang, MLK ; Mueller, J ; Symeonides, C ; Saffery, R ; Ponsonby, A-L (ELSEVIER SCI LTD, 2022-12-15)
    Prenatal exposure to plastic chemicals has been associated with alterations to early-life immune function in children. However, previous studies have generally been small and focused on limited repertoires of immune indices. In a large population-based pre-birth cohort (n = 1074), third-trimester measurements of eight phthalate metabolites and three analogues of bisphenols were used to estimate prenatal exposure to phthalate and bisphenol compounds. In cord blood, immune cell populations were measured by flow cytometry and an extensive panel of cytokines and chemokines were measured by multiplex immunoassay. We used these cord blood analytes to estimate "early life" immune profiles. The full study sample comprises data from 774 infants with prenatal plastic metabolite measurements and any cord blood immune data. Multiple linear regression analysis was used to evaluate whether prenatal phthalate and bisphenol exposure was prospectively associated with cord blood immune cell populations and cytokine and chemokine levels. Generally, inverse associations were observed between prenatal phthalate exposure and cord blood immune indices. Higher exposure to di-n-butyl phthalate was associated with lower cord blood levels of platelet-derived growth factor (PDGF) and interferon gamma-induced protein 10 (IP-10); higher exposure to the sum of dibutyl phthalates was associated with lower cord blood levels of IP-10; and higher exposure to benzyl butyl phthalate was associated with lower cord blood levels of interleukin 1 beta (IL-1β). There was less evidence of associations between bisphenols and cord blood immune indices. These results extend previous work examining prenatal plastic chemical exposure and early-life immune development and highlight the importance of further examination of potential associations with health-related outcomes.
  • Item
    No Preview Available
    Infant inflammation predicts childhood emotional and behavioral problems and partially mediates socioeconomic disadvantage
    Pham, C ; Bekkering, S ; O'Hely, M ; Burgner, D ; Thomson, S ; Vuillermin, P ; Collier, F ; Marx, W ; Mansell, T ; Symeonides, C ; Sly, PD ; Tang, MLK ; Saffery, R ; Ponsonby, A-L ; BIS Invest Grp, BISIG (ACADEMIC PRESS INC ELSEVIER SCIENCE, 2022-08)
    BACKGROUND: Emotional and behavioral problems (EBP) are common in children. Environmental factors like socioeconomic disadvantage influence EBP pathogenesis and can trigger inflammation. However, the link between early inflammation-EBP in children is unclear. We investigated the associations between i) infant inflammatory biomarkers and subsequent EBP and ii) early life environmental factors and EBP and assessed whether infant inflammation mediated these associations. METHODS: Inflammatory biomarkers glycoprotein acetyls (GlycA) and high-sensitivity C-reactive protein (hsCRP) were quantified at birth and 12 months in a population-derived birth cohort, the Barwon Infant Study. Early life factors including demographic, prenatal, and perinatal factors were collected from antenatal to the two-year period. Internalizing and externalizing problems at age two were measured by the Child Behavior Checklist. Prospective associations were examined by multivariable regression analyses adjusted for potential confounders. Indirect effects of early life factors on EBP through inflammation were identified using mediation analyses. RESULTS: Elevated GlycA levels at birth (GlycAbirth) were associated with greater internalizing problems at age two (β = 1.32 per SD increase in GlycA; P = 0.001). Inflammation at birth had a stronger magnitude of effect with later EBP than at 12 months. GlycAbirth partially mediated the associations between lower household income (6%), multiparity (12%) and greater number of older siblings (13%) and EBP. Patterns were less evident for hsCRP or externalizing problems. CONCLUSIONS: GlycAbirth was positively associated with EBP at age two and partially mediated the association between several indicators of socioeconomic disadvantage and EBP. Prenatal and perinatal inflammation may be relevant to early neurodevelopment and emotional health.
  • Item
    Thumbnail Image
    Data Resource Profile: Melbourne Children's LifeCourse initiative (LifeCourse)
    O'Connor, M ; Moreno-Betancur, M ; Goldfeld, S ; Wake, M ; Patton, G ; Dwyer, T ; Tang, MLK ; Saffery, R ; Craig, JM ; Loke, J ; Burgner, D ; Olsson, CA ; Investigators, LC (OXFORD UNIV PRESS, 2022-10-13)
  • Item
    Thumbnail Image
    Population-based plasma lipidomics reveals developmental changes in metabolism and signatures of obesity risk: a mother-offspring cohort study
    Mir, SA ; Chen, L ; Burugupalli, S ; Burla, B ; Ji, S ; Smith, AAT ; Narasimhan, K ; Ramasamy, A ; Tan, KM-L ; Huynh, K ; Giles, C ; Mei, D ; Wong, G ; Yap, F ; Tan, KH ; Collier, F ; Saffery, R ; Vuillermin, P ; Bendt, AK ; Burgner, D ; Ponsonby, A-L ; Lee, YS ; Chong, YS ; Gluckman, PD ; Eriksson, JG ; Meikle, PJ ; Wenk, MR ; Karnani, N (BMC, 2022-07-25)
    BACKGROUND: Lipids play a vital role in health and disease, but changes to their circulating levels and the link with obesity remain poorly characterized in expecting mothers and their offspring in early childhood. METHODS: LC-MS/MS-based quantitation of 480 lipid species was performed on 2491 plasma samples collected at 4 time points in the mother-offspring Asian cohort GUSTO (Growing Up in Singapore Towards healthy Outcomes). These 4 time points constituted samples collected from mothers at 26-28 weeks of gestation (n=752) and 4-5 years postpartum (n=650), and their offspring at birth (n=751) and 6 years of age (n=338). Linear regression models were used to identify the pregnancy and developmental age-specific variations in the plasma lipidomic profiles, and their association with obesity risk. An independent birth cohort (n=1935), the Barwon Infant Study (BIS), comprising mother-offspring dyads of Caucasian origin was used for validation. RESULTS: Levels of 36% of the profiled lipids were significantly higher (absolute fold change > 1.5 and Padj < 0.05) in antenatal maternal circulation as compared to the postnatal phase, with phosphatidylethanolamine levels changing the most. Compared to antenatal maternal lipids, cord blood showed lower concentrations of most lipid species (79%) except lysophospholipids and acylcarnitines. Changes in lipid concentrations from birth to 6 years of age were much higher in magnitude (log2FC=-2.10 to 6.25) than the changes observed between a 6-year-old child and an adult (postnatal mother) (log2FC=-0.68 to 1.18). Associations of cord blood lipidomic profiles with birth weight displayed distinct trends compared to the lipidomic profiles associated with child BMI at 6 years. Comparison of the results between the child and adult BMI identified similarities in association with consistent trends (R2=0.75). However, large number of lipids were associated with BMI in adults (67%) compared to the children (29%). Pre-pregnancy BMI was specifically associated with decrease in the levels of phospholipids, sphingomyelin, and several triacylglycerol species in pregnancy. CONCLUSIONS: In summary, our study provides a detailed landscape of the in utero lipid environment provided by the gestating mother to the growing fetus, and the magnitude of changes in plasma lipidomic profiles from birth to early childhood. We identified the effects of adiposity on the circulating lipid levels in pregnant and non-pregnant women as well as offspring at birth and at 6 years of age. Additionally, the pediatric vs maternal overlap of the circulating lipid phenotype of obesity risk provides intergenerational insights and early opportunities to track and intervene the onset of metabolic adversities. CLINICAL TRIAL REGISTRATION: This birth cohort is a prospective observational study, which was registered on 1 July 2010 under the identifier NCT01174875 .
  • Item
    Thumbnail Image
    Virology and immune dynamics reveal high household transmission of ancestral SARS-CoV-2 strain
    Tosif, S ; Haycroft, ER ; Sarkar, S ; Toh, ZQ ; Lien, AHD ; Donato, CM ; Selva, KJ ; Hoq, M ; Overmars, I ; Nguyen, J ; Lee, L-Y ; Clifford, V ; Daley, A ; Mordant, FL ; McVernon, J ; Mulholland, K ; Marcato, AJ ; Smith, MZ ; Curtis, N ; McNab, S ; Saffery, R ; Kedzierska, K ; Subarrao, K ; Burgner, D ; Steer, A ; Bines, JE ; Sutton, P ; Licciardi, P ; Chung, AW ; Neeland, MR ; Crawford, NW (WILEY, 2022-07)
    BACKGROUND: Household studies are crucial for understanding the transmission of SARS-CoV-2 infection, which may be underestimated from PCR testing of respiratory samples alone. We aim to combine the assessment of household mitigation measures; nasopharyngeal, saliva, and stool PCR testing; along with mucosal and systemic SARS-CoV-2-specific antibodies, to comprehensively characterize SARS-CoV-2 infection and transmission in households. METHODS: Between March and September 2020, we obtained samples from 92 participants in 26 households in Melbourne, Australia, in a 4-week period following the onset of infection with ancestral SARS-CoV-2 variants. RESULTS: The secondary attack rate was 36% (24/66) when using nasopharyngeal swab (NPS) PCR positivity alone. However, when respiratory and nonrespiratory samples were combined with antibody responses in blood and saliva, the secondary attack rate was 76% (50/66). SARS-CoV-2 viral load of the index case and household isolation measures were key factors that determine secondary transmission. In 27% (7/26) of households, all family members tested positive by NPS for SARS-CoV-2 and were characterized by lower respiratory Ct values than low transmission families (Median 22.62 vs. 32.91; IQR 17.06-28.67 vs. 30.37-34.24). High transmission families were associated with enhanced plasma antibody responses to multiple SARS-CoV-2 antigens and the presence of neutralizing antibodies. Three distinguishing saliva SARS-CoV-2 antibody features were identified according to age (IgA1 to Spike 1, IgA1 to nucleocapsid protein (NP)), suggesting that adults and children generate distinct mucosal antibody responses during the acute phase of infection. CONCLUSION: Utilizing respiratory and nonrespiratory PCR testing, along with the measurement of SARS-CoV-2-specific local and systemic antibodies, provides a more accurate assessment of infection within households and highlights some of the immunological differences in response between children and adults.
  • Item
    Thumbnail Image
    Early life infection and proinflammatory, atherogenic metabolomic and lipidomic profiles in infancy: a population-based cohort study
    Mansell, T ; Saffery, R ; Burugupalli, S ; Ponsonby, A-L ; Tang, MLK ; O'Hely, M ; Bekkering, S ; Smith, AAT ; Rowland, R ; Ranganathan, S ; Sly, PD ; Vuillermin, P ; Collier, F ; Meikle, P ; Burgner, D (eLIFE SCIENCES PUBL LTD, 2022-05-10)
    BACKGROUND: The risk of adult onset cardiovascular and metabolic (cardiometabolic) disease accrues from early life. Infection is ubiquitous in infancy and induces inflammation, a key cardiometabolic risk factor, but the relationship between infection, inflammation, and metabolic profiles in early childhood remains unexplored. We investigated relationships between infection and plasma metabolomic and lipidomic profiles at age 6 and 12 months, and mediation of these associations by inflammation. METHODS: Matched infection, metabolomics, and lipidomics data were generated from 555 infants in a pre-birth longitudinal cohort. Infection data from birth to 12 months were parent-reported (total infections at age 1, 3, 6, 9, and 12 months), inflammation markers (high-sensitivity C-reactive protein [hsCRP]; glycoprotein acetyls [GlycA]) were quantified at 12 months. Metabolic profiles were 12-month plasma nuclear magnetic resonance metabolomics (228 metabolites) and liquid chromatography/mass spectrometry lipidomics (776 lipids). Associations were evaluated with multivariable linear regression models. In secondary analyses, corresponding inflammation and metabolic data from birth (serum) and 6-month (plasma) time points were used. RESULTS: At 12 months, more frequent infant infections were associated with adverse metabolomic (elevated inflammation markers, triglycerides and phenylalanine, and lower high-density lipoprotein [HDL] cholesterol and apolipoprotein A1) and lipidomic profiles (elevated phosphatidylethanolamines and lower trihexosylceramides, dehydrocholesteryl esters, and plasmalogens). Similar, more marked, profiles were observed with higher GlycA, but not hsCRP. GlycA mediated a substantial proportion of the relationship between infection and metabolome/lipidome, with hsCRP generally mediating a lower proportion. Analogous relationships were observed between infection and 6-month inflammation, HDL cholesterol, and apolipoprotein A1. CONCLUSIONS: Infants with a greater infection burden in the first year of life had proinflammatory and proatherogenic plasma metabolomic/lipidomic profiles at 12 months of age that in adults are indicative of heightened risk of cardiovascular disease, obesity, and type 2 diabetes. These findings suggest potentially modifiable pathways linking early life infection and inflammation with subsequent cardiometabolic risk. FUNDING: The establishment work and infrastructure for the BIS was provided by the Murdoch Children's Research Institute (MCRI), Deakin University, and Barwon Health. Subsequent funding was secured from National Health and Medical Research Council of Australia (NHMRC), The Shepherd Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O'Brien Memorial Asthma Foundation, the Our Women's Our Children's Fund Raising Committee Barwon Health, the Rotary Club of Geelong, the Minderoo Foundation, the Ilhan Food Allergy Foundation, GMHBA, Vanguard Investments Australia Ltd, and the Percy Baxter Charitable Trust, Perpetual Trustees. In-kind support was provided by the Cotton On Foundation and CreativeForce. The study sponsors were not involved in the collection, analysis, and interpretation of data; writing of the report; or the decision to submit the report for publication. Research at MCRI is supported by the Victorian Government's Operational Infrastructure Support Program. This work was also supported by NHMRC Senior Research Fellowships to ALP (1008396); DB (1064629); and RS (1045161) , NHMRC Investigator Grants to ALP (1110200) and DB (1175744), NHMRC-A*STAR project grant (1149047). TM is supported by an MCRI ECR Fellowship. SB is supported by the Dutch Research Council (452173113).
  • Item
    Thumbnail Image
    Shortened Infant Telomere Length Is Associated with Attention Deficit/Hyperactivity Disorder Symptoms in Children at Age Two Years: A Birth Cohort Study
    Pham, C ; Vryer, R ; O'Hely, M ; Mansell, T ; Burgner, D ; Collier, F ; Symeonides, C ; Tang, MLK ; Vuillermin, P ; Gray, L ; Saffery, R ; Ponsonby, A-L (MDPI, 2022-05)
    Environmental factors can accelerate telomere length (TL) attrition. Shortened TL is linked to attention deficit/hyperactivity disorder (ADHD) symptoms in school-aged children. The onset of ADHD occurs as early as preschool-age, but the TL-ADHD association in younger children is unknown. We investigated associations between infant TL and ADHD symptoms in children and assessed environmental factors as potential confounders and/or mediators of this association. Relative TL was measured by quantitative polymerase chain reaction in cord and 12-month blood in the birth cohort study, the Barwon Infant Study. Early life environmental factors collected antenatally to two years were used to measure confounding. ADHD symptoms at age two years were evaluated by the Child Behavior Checklist Attention Problems (AP) and the Attention Deficit/Hyperactivity Problems (ADHP). Associations between early life environmental factors on TL or ADHD symptoms were assessed using multivariable regression models adjusted for relevant factors. Telomere length at 12 months (TL12), but not at birth, was inversely associated with AP (β = -0.56; 95% CI (-1.13, 0.006); p = 0.05) and ADHP (β = -0.66; 95% CI (-1.11, -0.21); p = 0.004). Infant secondhand smoke exposure at one month was independently associated with shorter TL12 and also higher ADHD symptoms. Further work is needed to elucidate the mechanisms that influence TL attrition and early neurodevelopment.
  • Item
    Thumbnail Image
    A Pathway-Based Genetic Score for Oxidative Stress: An Indicator of Host Vulnerability to Phthalate-Associated Adverse Neurodevelopment
    Tanner, S ; Thomson, S ; Drummond, K ; O'Hely, M ; Symeonides, C ; Mansell, T ; Saffery, R ; Sly, PD ; Collier, F ; Burgner, D ; Sugeng, EJ ; Dwyer, T ; Vuillermin, P ; Ponsonby, A-L (MDPI, 2022-04)
    The developing brain is highly sensitive to environmental disturbances, and adverse exposures can act through oxidative stress. Given that oxidative stress susceptibility is determined partly by genetics, multiple studies have employed genetic scores to explore the role of oxidative stress in human disease. However, traditional approaches to genetic score construction face a range of challenges, including a lack of interpretability, bias towards the disease outcome, and often overfitting to the study they were derived on. Here, we develop an alternative strategy by first generating a genetic pathway function score for oxidative stress (gPFSox) based on the transcriptional activity levels of the oxidative stress response pathway in brain and other tissue types. Then, in the Barwon Infant Study (BIS), a population-based birth cohort (n = 1074), we show that a high gPFSox, indicating reduced ability to counter oxidative stress, is linked to higher autism spectrum disorder risk and higher parent-reported autistic traits at age 4 years, with AOR values (per 2 additional pro-oxidant alleles) of 2.10 (95% CI (1.12, 4.11); p = 0.024) and 1.42 (95% CI (1.02, 2.01); p = 0.041), respectively. Past work in BIS has reported higher prenatal phthalate exposure at 36 weeks of gestation associated with offspring autism spectrum disorder. In this study, we examine combined effects and show a consistent pattern of increased neurodevelopmental problems for individuals with both a high gPFSox and high prenatal phthalate exposure across a range of outcomes, including high gPFSox and high DEHP levels against autism spectrum disorder (attributable proportion due to interaction 0.89; 95% CI (0.62, 1.16); p < 0.0001). The results highlight the utility of this novel functional genetic score and add to the growing evidence implicating gestational phthalate exposure in adverse neurodevelopment.
  • Item
    Thumbnail Image
    Innate Immune Activation and Circulating Inflammatory Markers in Preschool Children
    Collier, F ; Chau, C ; Mansell, T ; Faye-Chauhan, K ; Vuillermin, P ; Ponsonby, A-L ; Saffery, R ; Tang, MLK ; O'Hely, M ; Carlin, J ; Gray, LEK ; Bekkering, S ; Burgner, D (FRONTIERS MEDIA SA, 2022-02-08)
    Early childhood is characterised by repeated infectious exposures that result in inflammatory responses by the innate immune system. In addition, this inflammatory response to infection is thought to contribute to the epidemiological evidence linking childhood infection and adult non-communicable diseases. Consequently, the relationship between innate immune responses and inflammation during early life may inform prevention of NCDs later in life. In adults, non-genetic host factors such as age, sex, and obesity, strongly impact cytokine production and circulating mediators, but data in children are lacking. Here, we assessed cytokine responses and inflammatory markers in a population of healthy preschool children (mean age 4.2 years). We studied associations between cytokines, plasma inflammatory markers and non-genetic host factors, such as sex, age, adiposity, season, and immune cell composition. Similar to adults, boys had a higher inflammatory response than girls, with IL-12p70 and IL-10 upregulated following TLR stimulation. Adiposity and winter season were associated with increased circulating inflammatory markers but not cytokine production. The inflammatory markers GlycA and hsCRP were positively associated with production of a number of cytokines and may therefore reflect innate immune function and inflammatory potential. This dataset will be informative for future prospective studies relating immune parameters to preclinical childhood NCD phenotypes.
  • Item
    Thumbnail Image
    Ontogeny of circulating lipid metabolism in pregnancy and early childhood - a longitudinal population study
    Burugupalli, S ; Smith, AAT ; Oshlensky, G ; Huynh, K ; Giles, C ; Wang, T ; George, A ; Paul, S ; Nguyen, A ; Duong, T ; Mellett, N ; Cinel, M ; Mir, SA ; Chen, L ; Wenk, MR ; Karnani, N ; Collier, F ; Saffery, R ; Vuillermin, P ; Ponsonby, A-L ; Burgner, D ; Meikle, P (eLIFE SCIENCES PUBL LTD, 2022-03-02)
    BACKGROUND: There is mounting evidence that in utero and early life exposures may predispose an individual to metabolic disorders in later life; and dysregulation of lipid metabolism is critical in such outcomes. However, there is limited knowledge about lipid metabolism and factors causing lipid dysregulation in early life that could result in adverse health outcomes in later life. We studied the effect of antenatal factors such as gestational age, birth weight, and mode of birth on lipid metabolism at birth; changes in the circulating lipidome in the first 4 years of life and the effect of breastfeeding in the first year of life. From this study, we aim to generate a framework for deeper understanding into factors effecting lipid metabolism in early life, to provide early interventions for those at risk of developing metabolic disorders including cardiovascular diseases. METHODS: We performed comprehensive lipid profiling of 1074 mother-child dyads in the Barwon Infant Study (BIS), a population-based pre-birth cohort and measured 776 distinct lipid features across 39 lipid classes using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). We measured lipids in 1032 maternal serum samples at 28 weeks' gestation, 893 cord serum samples at birth, 793, 735, and 511 plasma samples at 6, 12 months, and 4 years, respectively. Cord serum was enriched with long chain poly-unsaturated fatty acids (LC-PUFAs), and corresponding cholesteryl esters relative to the maternal serum. We performed regression analyses to investigate the associations of cord serum lipid species with antenatal factors: gestational age, birth weight, mode of birth and duration of labour. RESULTS: The lipidome differed between mother and newborn and changed markedly with increasing child's age. Alkenylphosphatidylethanolamine species containing LC-PUFAs increased with child's age, whereas the corresponding lysophospholipids and triglycerides decreased. Majority of the cord serum lipids were strongly associated with gestational age and birth weight, with most lipids showing opposing associations. Each mode of birth showed an independent association with cord serum lipids. Breastfeeding had a significant impact on the plasma lipidome in the first year of life, with up to 17-fold increases in a few species of alkyldiaclylglycerols at 6 months of age. CONCLUSIONS: This study sheds light on lipid metabolism in infancy and early childhood and provide a framework to define the relationship between lipid metabolism and health outcomes in early childhood. FUNDING: This work was supported by the A*STAR-NHMRC joint call funding (1711624031).