Paediatrics (RCH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Placenta-specific Methylation of the Vitamin D 24-Hydroxylase Gene IMPLICATIONS FOR FEEDBACK AUTOREGULATION OF ACTIVE VITAMIN D LEVELS AT THE FETOMATERNAL INTERFACE
    Novakovic, B ; Sibson, M ; Ng, HK ; Manuelpillai, U ; Rakyan, V ; Down, T ; Beck, S ; Fournier, T ; Evain-Brion, D ; Dimitriadis, E ; Craig, JM ; Morley, R ; Saffery, R (ELSEVIER, 2009-05-29)
    Plasma concentrations of biologically active vitamin D (1,25-(OH)(2)D) are tightly controlled via feedback regulation of renal 1alpha-hydroxylase (CYP27B1; positive) and 24-hydroxylase (CYP24A1; catabolic) enzymes. In pregnancy, this regulation is uncoupled, and 1,25-(OH)(2)D levels are significantly elevated, suggesting a role in pregnancy progression. Epigenetic regulation of CYP27B1 and CYP24A1 has previously been described in cell and animal models, and despite emerging evidence for a critical role of epigenetics in placentation generally, little is known about the regulation of enzymes modulating vitamin D homeostasis at the fetomaternal interface. In this study, we investigated the methylation status of genes regulating vitamin D bioavailability and activity in the placenta. No methylation of the VDR (vitamin D receptor) and CYP27B1 genes was found in any placental tissues. In contrast, the CYP24A1 gene is methylated in human placenta, purified cytotrophoblasts, and primary and cultured chorionic villus sampling tissue. No methylation was detected in any somatic human tissue tested. Methylation was also evident in marmoset and mouse placental tissue. All three genes were hypermethylated in choriocarcinoma cell lines, highlighting the role of vitamin D deregulation in this cancer. Gene expression analysis confirmed a reduced capacity for CYP24A1 induction with promoter methylation in primary cells and in vitro reporter analysis demonstrated that promoter methylation directly down-regulates basal promoter activity and abolishes vitamin D-mediated feedback activation. This study strongly suggests that epigenetic decoupling of vitamin D feedback catabolism plays an important role in maximizing active vitamin D bioavailability at the fetomaternal interface.
  • Item
    Thumbnail Image
    Imprinted CDKN1C Is a Tumor Suppressor in Rhabdoid Tumor and Activated by Restoration of SMARCB1 and Histone Deacetylase Inhibitors
    Algar, EM ; Muscat, A ; Dagar, V ; Rickert, C ; Chow, CW ; Biegel, JA ; Ekert, PG ; Saffery, R ; Craig, J ; Johnstone, RW ; Ashley, DM ; Blagosklonny, MV (PUBLIC LIBRARY SCIENCE, 2009-02-16)
    SMARCB1 is deleted in rhabdoid tumor, an aggressive paediatric malignancy affecting the kidney and CNS. We hypothesized that the oncogenic pathway in rhabdoid tumors involved epigenetic silencing of key cell cycle regulators as a consequence of altered chromatin-remodelling, attributable to loss of SMARCB1, and that this hypothesis if proven could provide a biological rationale for testing epigenetic therapies in this disease. We used an inducible expression system to show that the imprinted cell cycle inhibitor CDKN1C is a downstream target for SMARCB1 and is transcriptionally activated by increased histone H3 and H4 acetylation at the promoter. We also show that CDKN1C expression induces cell cycle arrest, CDKN1C knockdown with siRNA is associated with increased proliferation, and is able to compete against the anti-proliferative effect of restored SMARCB1 expression. The histone deacetylase inhibitor (HDACi), Romidepsin, specifically restored CDKN1C expression in rhabdoid tumor cells through promoter histone H3 and H4 acetylation, recapitulating the effect of SMARCB1 on CDKNIC allelic expression, and induced cell cycle arrest in G401 and STM91-01 rhabdoid tumor cell lines. CDKN1C expression was also shown to be generally absent in clinical specimens of rhabdoid tumor, however CDKN1A and CDKN1B expression persisted. Our observations suggest that maintenance of CDKN1C expression plays a critical role in preventing rhabdoid tumor growth. Significantly, we report for the first time, parallels between the molecular pathways of SMARCB1 restoration and Romidepsin treatment, and demonstrate a biological basis for the further exploration of histone deacetylase inhibitors as relevant therapeutic reagents in the treatment of rhabdoid tumor.