Paediatrics (RCH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    Thumbnail Image
    Advances in CAR T cell immunotherapy for paediatric brain tumours
    Rao, P ; Furst, L ; Meyran, D ; Mayoh, C ; Neeson, PJ ; Terry, R ; Khuong-Quang, D-A ; Mantamadiotis, T ; Ekert, PG (FRONTIERS MEDIA SA, 2022-11-23)
    Brain tumours are the most common solid tumour in children and the leading cause of cancer related death in children. Current treatments include surgery, chemotherapy and radiotherapy. The need for aggressive treatment means many survivors are left with permanent severe disability, physical, intellectual and social. Recent progress in immunotherapy, including genetically engineered T cells with chimeric antigen receptors (CARs) for treating cancer, may provide new avenues to improved outcomes for patients with paediatric brain cancer. In this review we discuss advances in CAR T cell immunotherapy, the major CAR T cell targets that are in clinical and pre-clinical development with a focus on paediatric brain tumours, the paediatric brain tumour microenvironment and strategies used to improve CAR T cell therapy for paediatric tumours.
  • Item
    No Preview Available
    Enhancer retargeting of CDX2 and UBTF::ATXN7L3 define a subtype of high-risk B-progenitor acute lymphoblastic leukemia
    Kimura, S ; Montefiori, L ; Iacobucci, I ; Zhao, Y ; Gao, Q ; Paietta, EM ; Haferlach, C ; Laird, AD ; Mead, PE ; Gu, Z ; Stock, W ; Litzow, M ; Rowe, JM ; Luger, SM ; Hunger, SP ; Ryland, GL ; Schmidt, B ; Ekert, PG ; Oshlack, A ; Grimmond, SM ; Rehn, J ; Breen, J ; Yeung, D ; White, DL ; Aldoss, I ; Jabbour, EJ ; Pui, C-H ; Meggendorfer, M ; Walter, W ; Kern, W ; Haferlach, T ; Brady, S ; Zhang, J ; Roberts, KG ; Blombery, P ; Mullighan, CG (AMER SOC HEMATOLOGY, 2022-06-16)
    Transcriptome sequencing has identified multiple subtypes of B-progenitor acute lymphoblastic leukemia (B-ALL) of prognostic significance, but a minority of cases lack a known genetic driver. Here, we used integrated whole-genome (WGS) and -transcriptome sequencing (RNA-seq), enhancer mapping, and chromatin topology analysis to identify previously unrecognized genomic drivers in B-ALL. Newly diagnosed (n = 3221) and relapsed (n = 177) B-ALL cases with tumor RNA-seq were studied. WGS was performed to detect mutations, structural variants, and copy number alterations. Integrated analysis of histone 3 lysine 27 acetylation and chromatin looping was performed using HiChIP. We identified a subset of 17 newly diagnosed and 5 relapsed B-ALL cases with a distinct gene expression profile and 2 universal and unique genomic alterations resulting from aberrant recombination-activating gene activation: a focal deletion downstream of PAN3 at 13q12.2 resulting in CDX2 deregulation by the PAN3 enhancer and a focal deletion of exons 18-21 of UBTF at 17q21.31 resulting in a chimeric fusion, UBTF::ATXN7L3. A subset of cases also had rearrangement and increased expression of the PAX5 gene, which is otherwise uncommon in B-ALL. Patients were more commonly female and young adult with median age 35 (range,12-70 years). The immunophenotype was characterized by CD10 negativity and immunoglobulin M positivity. Among 16 patients with known clinical response, 9 (56.3%) had high-risk features including relapse (n = 4) or minimal residual disease >1% at the end of remission induction (n = 5). CDX2-deregulated, UBTF::ATXN7L3 rearranged (CDX2/UBTF) B-ALL is a high-risk subtype of leukemia in young adults for which novel therapeutic approaches are required.
  • Item
    No Preview Available
    ALLSorts: an RNA-Seq subtype classifier for B-cell acute lymphoblastic leukemia
    Schmidt, B ; Brown, LM ; Ryland, GL ; Lonsdale, A ; Kosasih, HJ ; Ludlow, LE ; Majewski, IJ ; Blombery, P ; Ekert, PG ; Davidson, NM ; Oshlack, A (ELSEVIER, 2022-07-26)
    B-cell acute lymphoblastic leukemia (B-ALL) is the most common childhood cancer. Subtypes within B-ALL are distinguished by characteristic structural variants and mutations, which in some instances strongly correlate with responses to treatment. The World Health Organisation (WHO) recognises seven distinct classifications, or subtypes, as of 2016. However, recent studies have demonstrated that B-ALL can be segmented into 23 subtypes based on a combination of genomic features and gene expression profiles. A method to identify a patient's subtype would have clear utility. Despite this, no publically available classification methods using RNA-Seq exist for this purpose. Here we present ALLSorts: a publicly available method that uses RNA-Seq data to classify B-ALL samples to 18 known subtypes and five meta-subtypes. ALLSorts is the result of a hierarchical supervised machine learning algorithm applied to a training set of 1223 B-ALL samples aggregated from multiple cohorts. Validation revealed that ALLSorts can accurately attribute samples to subtypes and can attribute multiple subtypes to a sample. Furthermore, when applied to both paediatric and adult cohorts, ALLSorts was able to classify previously undefined samples into subtypes. ALLSorts is available and documented on GitHub (https://github.com/Oshlack/AllSorts/).
  • Item
    No Preview Available
    Ceramide-induced integrated stress response overcomes Bcl-2 inhibitor resistance in acute myeloid leukemia
    Lewis, AC ; Pope, VS ; Tea, MN ; Li, M ; Nwosu, GO ; Nguyen, TM ; Wallington-Beddoe, CT ; Moretti, PAB ; Anderson, D ; Creek, DJ ; Costabile, M ; Ali, SR ; Thompson-Peach, CAL ; Dredge, BK ; Bert, AG ; Goodall, GJ ; Ekert, PG ; Brown, AL ; D'Andrea, R ; Robinson, N ; Pitman, MR ; Thomas, D ; Ross, DM ; Gliddon, BL ; Powell, JA ; Pitson, SM (AMER SOC HEMATOLOGY, 2022-06-30)
    Inducing cell death by the sphingolipid ceramide is a potential anticancer strategy, but the underlying mechanisms remain poorly defined. In this study, triggering an accumulation of ceramide in acute myeloid leukemia (AML) cells by inhibition of sphingosine kinase induced an apoptotic integrated stress response (ISR) through protein kinase R-mediated activation of the master transcription factor ATF4. This effect led to transcription of the BH3-only protein Noxa and degradation of the prosurvival Mcl-1 protein on which AML cells are highly dependent for survival. Targeting this novel ISR pathway, in combination with the Bcl-2 inhibitor venetoclax, synergistically killed primary AML blasts, including those with venetoclax-resistant mutations, as well as immunophenotypic leukemic stem cells, and reduced leukemic engraftment in patient-derived AML xenografts. Collectively, these findings provide mechanistic insight into the anticancer effects of ceramide and preclinical evidence for new approaches to augment Bcl-2 inhibition in the therapy of AML and other cancers with high Mcl-1 dependency.
  • Item
    Thumbnail Image
    SFPQ-ABL1 and BCR-ABL1 use different signaling networks to drive B-cell acute lymphoblastic leukemia
    Brown, LM ; Hediyeh-Zadeh, S ; Sadras, T ; Huckstep, H ; Sandow, JJ ; Bartolo, RC ; Kosasih, HJ ; Davidson, NM ; Schmidt, B ; Bjelosevic, S ; Johnstone, R ; Webb, A ; Khaw, SL ; Oshlack, A ; Davis, MJ ; Ekert, PG (ELSEVIER, 2022-04-12)
    Philadelphia-like (Ph-like) acute lymphoblastic leukemia (ALL) is a high-risk subtype of B-cell ALL characterized by a gene expression profile resembling Philadelphia chromosome-positive ALL (Ph+ ALL) in the absence of BCR-ABL1. Tyrosine kinase-activating fusions, some involving ABL1, are recurrent drivers of Ph-like ALL and are targetable with tyrosine kinase inhibitors (TKIs). We identified a rare instance of SFPQ-ABL1 in a child with Ph-like ALL. SFPQ-ABL1 expressed in cytokine-dependent cell lines was sufficient to transform cells and these cells were sensitive to ABL1-targeting TKIs. In contrast to BCR-ABL1, SFPQ-ABL1 localized to the nuclear compartment and was a weaker driver of cellular proliferation. Phosphoproteomics analysis showed upregulation of cell cycle, DNA replication, and spliceosome pathways, and downregulation of signal transduction pathways, including ErbB, NF-κB, vascular endothelial growth factor (VEGF), and MAPK signaling in SFPQ-ABL1-expressing cells compared with BCR-ABL1-expressing cells. SFPQ-ABL1 expression did not activate phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling and was associated with phosphorylation of G2/M cell cycle proteins. SFPQ-ABL1 was sensitive to navitoclax and S-63845 and promotes cell survival by maintaining expression of Mcl-1 and Bcl-xL. SFPQ-ABL1 has functionally distinct mechanisms by which it drives ALL, including subcellular localization, proliferative capacity, and activation of cellular pathways. These findings highlight the role that fusion partners have in mediating the function of ABL1 fusions.
  • Item
    Thumbnail Image
    In vitro and in vivo drug screens of tumor cells identify novel therapies for high-risk child cancer
    Lau, LMS ; Mayoh, C ; Xie, J ; Barahona, P ; MacKenzie, KL ; Wong, M ; Kamili, A ; Tsoli, M ; Failes, TW ; Kumar, A ; Mould, EVA ; Gifford, A ; Chow, S-O ; Pinese, M ; Fletcher, J ; Arndt, GM ; Khuong-Quang, D-A ; Wadham, C ; Eden, G ; Trebilcock, P ; Joshi, S ; Alfred, S ; Gopalakrishnan, A ; Khan, A ; Wade, DG ; Strong, PA ; Manouvrier, E ; Morgan, LT ; Cadiz, R ; Ung, C ; Thomas, DM ; Tucker, KM ; Warby, M ; McCowage, GB ; Dalla-Pozza, L ; Byrne, JA ; Saletta, F ; Fellowes, A ; Fox, SB ; Norris, MD ; Tyrrell, V ; Trahair, TN ; Lock, RB ; Cowley, MJ ; Ekert, PG ; Haber, M ; Ziegler, DS ; Marshall, GM (WILEY, 2022-04-07)
    Biomarkers which better match anticancer drugs with cancer driver genes hold the promise of improved clinical responses and cure rates. We developed a precision medicine platform of rapid high-throughput drug screening (HTS) and patient-derived xenografting (PDX) of primary tumor tissue, and evaluated its potential for treatment identification among 56 consecutively enrolled high-risk pediatric cancer patients, compared with conventional molecular genomics and transcriptomics. Drug hits were seen in the majority of HTS and PDX screens, which identified therapeutic options for 10 patients for whom no targetable molecular lesions could be found. Screens also provided orthogonal proof of drug efficacy suggested by molecular analyses and negative results for some molecular findings. We identified treatment options across the whole testing platform for 70% of patients. Only molecular therapeutic recommendations were provided to treating oncologists and led to a change in therapy in 53% of patients, of whom 29% had clinical benefit. These data indicate that in vitro and in vivo drug screening of tumor cells could increase therapeutic options and improve clinical outcomes for high-risk pediatric cancer patients.
  • Item
    Thumbnail Image
    JAFFAL: detecting fusion genes with long-read transcriptome sequencing
    Davidson, NM ; Chen, Y ; Sadras, T ; Ryland, GL ; Blombery, P ; Ekert, PG ; Goke, J ; Oshlack, A (BMC, 2022-01-06)
    In cancer, fusions are important diagnostic markers and targets for therapy. Long-read transcriptome sequencing allows the discovery of fusions with their full-length isoform structure. However, due to higher sequencing error rates, fusion finding algorithms designed for short reads do not work. Here we present JAFFAL, to identify fusions from long-read transcriptome sequencing. We validate JAFFAL using simulations, cell lines, and patient data from Nanopore and PacBio. We apply JAFFAL to single-cell data and find fusions spanning three genes demonstrating transcripts detected from complex rearrangements. JAFFAL is available at https://github.com/Oshlack/JAFFA/wiki .
  • Item
    Thumbnail Image
    Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma
    Terry, RL ; Meyran, D ; Fleuren, EDG ; Mayoh, C ; Zhu, J ; Omer, N ; Ziegler, DS ; Haber, M ; Darcy, PK ; Trapani, JA ; Neeson, PJ ; Ekert, PG (MDPI, 2021-09)
    Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.
  • Item
    Thumbnail Image
    Enhancing the Potential of Immunotherapy in Paediatric Sarcomas: Breaking the Immunosuppressive Barrier with Receptor Tyrosine Kinase Inhibitors
    Fleuren, EDG ; Terry, RL ; Meyran, D ; Omer, N ; Trapani, JA ; Haber, M ; Neeson, PJ ; Ekert, PG (MDPI, 2021-12)
    Despite aggressive surgery, chemotherapy, and radiotherapy, survival of children and adolescents and young adults (AYAs) with sarcoma has not improved significantly in the past four decades. Immune checkpoint inhibitors (ICIs) are an exciting type of immunotherapy that offer new opportunities for the treatment of paediatric and AYA sarcomas. However, to date, most children do not derive a benefit from this type of treatment as a monotherapy. The immunosuppressive tumour microenvironment is a major barrier limiting their efficacy. Combinations of ICIs, such as anti-PD-1 therapy, with targeted molecular therapies that have immunomodulatory properties may be the key to breaking through immunosuppressive barriers and improving patient outcomes. Preclinical studies have indicated that several receptor tyrosine kinase inhibitors (RTKi) can alter the tumour microenvironment and boost the efficacy of anti-PD-1 therapy. A number of these combinations have entered phase-1/2 clinical trials, mostly in adults, and in most instances have shown efficacy with manageable side-effects. In this review, we discuss the status of ICI therapy in paediatric and AYA sarcomas and the rationale for co-treatment with RTKis. We highlight new opportunities for the integration of ICI therapy with RTK inhibitors, to improve outcomes for children with sarcoma.
  • Item
    No Preview Available
    Precision medicine and phosphoproteomics for the identification of novel targeted therapeutic avenues in sarcomas
    Fordham, AM ; Ekert, PG ; Fleuren, EDG (ELSEVIER, 2021-12)
    Rapid advances in genomic technologies have enabled in-depth interrogation of cancer genomes, revealing novel and unexpected therapeutic targets in many cancer types. Identifying actionable dependencies in the diverse and heterogeneous group of sarcomas, particularly those that occur in children or adolescents and young adults (AYAs), remains especially challenging. These patients rarely harbor actionable genomic aberrations, no targeted agent is approved, and outcomes have remained poor for the past decades. This underlines a clear need to refine our methods for target identification. Phosphoproteomics studies in sarcoma showed the power of such analyses to capture novel actionable drivers that are not accompanied by mutational events or gene amplifications. This Review makes the case that incorporating phosphoproteomic molecular profiling alongside (functional) genomics technologies can significantly expand therapeutic target identification, and pinpoint drug mechanisms of action, in pediatric and AYA sarcoma patients. We explore the utility and prospects of phosphoproteomics in personalized medicine.