Paediatrics (RCH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    The threat among us: significance and scale of diabetic chronic kidney disease in Australia
    Lecamwasam, A ; Ekinci, EI ; MacIsaac, RJ ; Saffery, R ; Dwyer, KM (WILEY, 2017-12)
  • Item
    Thumbnail Image
    Genetic variation at the Th2 immune gene IL13 is associated with IgE-mediated paediatric food allergy
    Ashley, SE ; Tan, H-TT ; Peters, R ; Allen, KJ ; Vuillermin, P ; Dharmage, SC ; Tang, MLK ; Koplin, J ; Lowe, A ; Ponsonby, A-L ; Molloy, J ; Matheson, MC ; Saffery, R ; Ellis, JA ; Martino, D (WILEY, 2017-08)
    BACKGROUND: Food allergies pose a considerable world-wide public health burden with incidence as high as one in ten in 12-month-old infants. Few food allergy genetic risk variants have yet been identified. The Th2 immune gene IL13 is a highly plausible genetic candidate as it is central to the initiation of IgE class switching in B cells. OBJECTIVE: Here, we sought to investigate whether genetic polymorphisms at IL13 are associated with the development of challenge-proven IgE-mediated food allergy. METHOD: We genotyped nine IL13 "tag" single nucleotide polymorphisms (tag SNPs) in 367 challenge-proven food allergic cases, 199 food-sensitized tolerant cases and 156 non-food allergic controls from the HealthNuts study. 12-month-old infants were phenotyped using open oral food challenges. SNPs were tested using Cochran-Mantel-Haenszel test adjusted for ancestry strata. A replication study was conducted in an independent, co-located sample of four paediatric cohorts consisting of 203 food allergic cases and 330 non-food allergic controls. Replication sample phenotypes were defined by clinical history of reactivity, 95% PPV or challenge, and IL13 genotyping was performed. RESULTS: IL13 rs1295686 was associated with challenge-proven food allergy in the discovery sample (P=.003; OR=1.75; CI=1.20-2.53). This association was also detected in the replication sample (P=.03, OR=1.37, CI=1.03-1.82) and further supported by a meta-analysis (P=.0006, OR=1.50). However, we cannot rule out an association with food sensitization. Carriage of the rs1295686 variant A allele was also associated with elevated total plasma IgE. CONCLUSIONS AND CLINICAL RELAVANCE: We show for the first time, in two independent cohorts, that IL13 polymorphism rs1295686 (in complete linkage disequilibrium with functional variant rs20541) is associated with challenge-proven food allergy.
  • Item
    Thumbnail Image
    The skin barrier function gene SPINK5 is associated with challenge-proven IgE-mediated food allergy in infants
    Ashley, SE ; Tan, H-TT ; Vuillermin, P ; Dharmage, SC ; Tang, MLK ; Koplin, J ; Gurrin, LC ; Lowe, A ; Lodge, C ; Ponsonby, A-L ; Molloy, J ; Martin, P ; Matheson, MC ; Saffery, R ; Allen, KJ ; Ellis, JA ; Martino, D (WILEY, 2017-09)
    BACKGROUND: A defective skin barrier is hypothesized to be an important route of sensitization to dietary antigens and may lead to food allergy in some children. Missense mutations in the serine peptidase inhibitor Kazal type 5 (SPINK5) skin barrier gene have previously been associated with allergic conditions. OBJECTIVE: To determine whether genetic variants in and around SPINK5 are associated with IgE-mediated food allergy. METHOD: We genotyped 71 "tag" single nucleotide polymorphisms (tag-SNPs) within a region spanning ~263 kb including SPINK5 (~61 kb) in n=722 (n=367 food-allergic, n=199 food-sensitized-tolerant and n=156 non-food-allergic controls) 12-month-old infants (discovery sample) phenotyped for food allergy with the gold standard oral food challenge. Transepidermal water loss (TEWL) measures were collected at 12 months from a subset (n=150) of these individuals. SNPs were tested for association with food allergy using the Cochran-Mantel-Haenszel test adjusting for ancestry strata. Association analyses were replicated in an independent sample group derived from four paediatric cohorts, total n=533 (n=203 food-allergic, n=330 non-food-allergic), mean age 2.5 years, with food allergy defined by either clinical history of reactivity, 95% positive predictive value (PPV) or challenge, corrected for ancestry by principal components. RESULTS: SPINK5 variant rs9325071 (A⟶G) was associated with challenge-proven food allergy in the discovery sample (P=.001, OR=2.95, CI=1.49-5.83). This association was further supported by replication (P=.007, OR=1.58, CI=1.13-2.20) and by meta-analysis (P=.0004, OR=1.65). Variant rs9325071 is associated with decreased SPINK5 gene expression in the skin in publicly available genotype-tissue expression data, and we generated preliminary evidence for association of this SNP with elevated TEWL also. CONCLUSIONS: We report, for the first time, association between SPINK5 variant rs9325071 and challenge-proven IgE-mediated food allergy.
  • Item
    Thumbnail Image
    Vitamin D insufficiency in the first 6 months of infancy and challenge-proven IgE-mediated food allergy at 1 year of age: a case-cohort study
    Molloy, J ; Koplin, JJ ; Allen, KJ ; Tang, MLK ; Collier, F ; Carlin, JB ; Saffery, R ; Burgner, D ; Ranganathan, S ; Dwyer, T ; Ward, AC ; Moreno-Betancur, M ; Clarke, M ; Ponsonby, AL ; Vuillermin, P (WILEY, 2017-08)
    BACKGROUND: Ecological evidence suggests vitamin D insufficiency (VDI) due to lower ambient ultraviolet radiation (UVR) exposure may be a risk factor for IgE-mediated food allergy. However, there are no studies relating directly measured VDI during early infancy to subsequent challenge-proven food allergy. OBJECTIVE: To prospectively investigate the association between VDI during infancy and challenge-proven food allergy at 1 year. METHODS: In a birth cohort (n = 1074), we used a case-cohort design to compare 25-hydroxyvitamin D3 (25(OH)D3 ) levels among infants with food allergy vs a random subcohort (n = 274). The primary exposures were VDI (25(OH)D3 <50 nM) at birth and 6 months of age. Ambient UVR and time in the sun were combined to estimate UVR exposure dose. IgE-mediated food allergy status at 1 year was determined by formal challenge. Binomial regression was used to examine associations between VDI, UVR exposure dose and food allergy and investigate potential confounding. RESULTS: Within the random subcohort, VDI was present in 45% (105/233) of newborns and 24% (55/227) of infants at 6 months. Food allergy prevalence at 1 year was 7.7% (61/786), and 6.5% (53/808) were egg-allergic. There was no evidence of an association between VDI at either birth (aRR 1.25, 95% CI 0.70-2.22) or 6 months (aRR 0.93, 95% CI 0.41-2.14) and food allergy at 1 year. CONCLUSIONS: There was no evidence that VDI during the first 6 months of infancy is a risk factor for food allergy at 1 year of age. These findings primarily relate to egg allergy, and larger studies are required.
  • Item
    Thumbnail Image
    Increased methylation and decreased expression of homeobox genes TLX1, HOXA10 and DLX5 in human placenta are associated with trophoblast differentiation
    Novakovic, B ; Fournier, T ; Harris, LK ; James, J ; Roberts, CT ; Yong, HEJ ; Kalionis, B ; Evain-Brion, D ; Ebeling, PR ; Wallace, EM ; Saffery, R ; Murthi, P (NATURE PORTFOLIO, 2017-07-03)
    Homeobox genes regulate embryonic and placental development, and are widely expressed in the human placenta, but their regulatory control by DNA methylation is unclear. DNA methylation analysis was performed on human placentae from first, second and third trimesters to determine methylation patterns of homeobox gene promoters across gestation. Most homeobox genes were hypo-methylated throughout gestation, suggesting that DNA methylation is not the primary mechanism involved in regulating HOX genes expression in the placenta. Nevertheless, several genes showed variable methylation patterns across gestation, with a general trend towards an increase in methylation over gestation. Three genes (TLX1, HOXA10 and DLX5) showed inverse gains of methylation with decreasing mRNA expression throughout pregnancy, supporting a role for DNA methylation in their regulation. Proteins encoded by these genes were primarily localised to the syncytiotrophoblast layer, and showed decreased expression later in gestation. siRNA mediated downregulation of DLX5, TLX1 and HOXA10 in primary term villous cytotrophoblast resulted in decreased proliferation and increased expression of differentiation markers, including ERVW-1. Our data suggest that loss of DLX5, TLX1 and HOXA10 expression in late gestation is required for proper placental differentiation and function.
  • Item
    Thumbnail Image
    DNA methylation landscape of ocular tissue relative to matched peripheral blood
    Hewitt, AW ; Januar, V ; Sexton-Oates, A ; Joo, JE ; Franchina, M ; Wang, JJ ; Liang, H ; Craig, JE ; Saffery, R (NATURE PORTFOLIO, 2017-04-13)
    Epigenetic variation is implicated in a range of non-communicable diseases, including those of the eye. However, investigating the role of epigenetic variation in central tissues, such as eye or brain, remains problematic and peripheral tissues are often used as surrogates. In this study, matched human blood and eye tissue (n = 8) were obtained post-mortem and DNA methylation profiling performed on blood, neurosensory retina, retinal pigment epithelium (RPE)/choroid and optic nerve tissue using the Illumina Infinium HumanMethylation450 platform. Unsupervised clustering and principal components analysis revealed tissue of origin as the main driver of methylation variation. Despite this, there was a strong correlation of methylation profiles between tissues with >255,000 CpG sites found to have similar methylation levels. An additional ~16,000 show similarity across ocular tissues only. A small proportion of probes showing inter-individual variation in blood co-varied with eye tissues within individuals, however much of this variation may be genetically driven. An improved understanding of the epigenetic landscape of the eye will have important implications for understanding eye disease. Despite a generally high correlation irrespective of origin, tissue type is the major driver of methylation variation, with only limited covariation between blood and any specific ocular tissue.
  • Item
    Thumbnail Image
    DNA methylation changes at infertility genes in newborn twins conceived by in vitro fertilisation
    Castillo-Fernandez, JE ; Loke, YJ ; Bass-Stringer, S ; Gao, F ; Xia, Y ; Wu, H ; Lu, H ; Liu, Y ; Wang, J ; Spector, TD ; Saffery, R ; Craig, JM ; Bell, JT (BMC, 2017-03-24)
    BACKGROUND: The association of in vitro fertilisation (IVF) and DNA methylation has been studied predominantly at regulatory regions of imprinted genes and at just thousands of the ~28 million CpG sites in the human genome. METHODS: We investigated the links between IVF and DNA methylation patterns in whole cord blood cells (n = 98) and cord blood mononuclear cells (n = 82) from newborn twins using genome-wide methylated DNA immunoprecipitation coupled with deep sequencing. RESULTS: At a false discovery rate (FDR) of 5%, we identified one significant whole blood DNA methylation change linked to conception via IVF, which was located ~3 kb upstream of TNP1, a gene previously linked to male infertility. The 46 most strongly associated signals (FDR of 25%) included a second region in a gene also previously linked to infertility, C9orf3, suggesting that our findings may in part capture the effect of parental subfertility. Using twin modelling, we observed that individual-specific environmental factors appear to be the main overall contributors of methylation variability at the FDR 25% IVF-associated differentially methylated regions, although evidence for methylation heritability was also obtained at several of these regions. We replicated previous findings of differential methylation associated with IVF at the H19/IGF2 region in cord blood mononuclear cells, and we validated the signal at C9orf3 in monozygotic twins. We also explored the impact of intracytoplasmic sperm injection on the FDR 25% signals for potential effects specific to male or female infertility factors. CONCLUSIONS: To our knowledge, this is the most comprehensive study of DNA methylation profiles at birth and IVF conception to date, and our results show evidence for epigenetic modifications that may in part reflect parental subfertility.
  • Item
    Thumbnail Image
    What's in a name? Context-dependent significance of 'global' methylation measures in human health and disease
    Vryer, R ; Saffery, R (BIOMED CENTRAL LTD, 2017-01-13)
    The study of DNA methylation in development and disease has 'exploded' as a field in recent years, with three major classes of measurement now routine. These encompass (i) locus-specific, (ii) genome-scale/wide and (iii) 'global' methylation approaches. Measures of global methylation refer to the level of 5-methylcytosine (5mC) content in a sample relative to total cytosine. Despite this, several other measures are often referred to as 'global', with the underlying assumption that they accurately reflect 5mC content. The two most common surrogate, or proxy, measures include generating a mean or median methylation value from (i) the average measure in thousands of highly repetitive genomic elements and (ii) many thousands to several million primarily unique CpG sites throughout the genome. Numerous lines of evidence suggest the underlying assumption of equivalence of these measures is flawed, with considerable variation in the regulation of different 'flavours' of DNA methylation throughout the genome depending on cell type, differentiation and disease state. As such, the regulation of methylation 'types' is often uncoupled. The emerging picture suggests that no approach can accurately detect all biologically important differences in 5mC variation and distribution in all instances, with this needing to be ascertained on a case-by-case basis. Thus, it is important to clearly elaborate the genomic context and content of DNA methylation being analysed, the sample and developmental stage in which it is being examined and to remember that in most instances, the most common measures are not a true representation of 'global' 5mC content as orginally defined.
  • Item
    Thumbnail Image
    Investigating the epigenetic profile of the inflammatory gene IL-6 in late-life depression
    Ryan, J ; Pilkington, L ; Neuhaus, K ; Ritchie, K ; Ancelin, M-L ; Saffery, R (BMC, 2017-10-25)
    BACKGROUND: It is well established that there is a link between inflammation and depression, with several studies reporting increased circulating levels of the pro-inflammatory cytokine, interleukin-6 (IL6), in depressed individuals. Peripheral epigenetic marks, including DNA methylation, hold promise as biomarkers for a range of complex conditions, with potential to inform diagnosis and tailor interventions. The aim of this study was to determine whether individuals with depression display differential methylation of the IL6 gene promoter compared to individuals without depression. METHODS: The ESPRIT study of later life neuropsychiatric disorders used a random sampling framework to select non-institutionalised participants aged ≥65 years and over living in the Montpellier region of France. Major depressive disorder (MDD) was assessed using the Mini International Neuropsychiatric Interview (MINI) according to DSM-IV criteria. High levels of depressive symptoms were defined as a score of ≥16 on the Centre for Epidemiologic Studies Depression Scale (CES-D). IL6 promoter DNA methylation was measured on a sub-sample of 380 participants who provided buccal samples. RESULTS: Individuals with depression (current MDD or high depressive symptoms) had lower IL6 methylation levels at one of the four sites investigated, however the effect size was small (∆ 2.4%, SE 0.009, p = 0.006). Interestingly, antidepressant use was independently associated with higher IL-6 methylation at the same site (∆ 4.6%, SE 0.019, p = 0.015). In multivariate linear regression analyses adjusting for covariates, including sex and smoking status, these associations remained. There was no effect modification when considering IL6 genotype. CONCLUSION: This study presents evidence that IL6 methylation may be a marker of depression status in older individuals, however further work is now needed to replicate these findings and to assess the association with inflammatory status of individuals.
  • Item
    Thumbnail Image
    DNA-Methylation and Body Composition in Preschool Children: Epigenome-Wide-Analysis in the European Childhood Obesity Project (CHOP)-Study
    Rzehak, P ; Covic, M ; Saffery, R ; Reischl, E ; Wahl, S ; Grote, V ; Weber, M ; Xhonneux, A ; Langhendries, J-P ; Ferre, N ; Closa-Monasterolo, R ; Escribano, J ; Verduci, E ; Riva, E ; Socha, P ; Gruszfeld, D ; Koletzko, B (NATURE PORTFOLIO, 2017-10-30)
    Adiposity and obesity result from the interaction of genetic variation and environmental factors from very early in life, possibly mediated by epigenetic processes. Few Epigenome-Wide-Association-Studies have identified DNA-methylation (DNAm) signatures associated with BMI and body composition in children. Body composition by Bio-Impedance-Analysis and genome-wide DNAm in whole blood were assessed in 374 pre-school children from four European countries. Associations were tested by linear regression adjusted for sex, age, centre, education, 6 WBC-proportions according to Houseman and 30 principal components derived from control probes. Specific DNAm variants were identified to be associated with BMI (212), fat-mass (230), fat-free-mass (120), fat-mass-index (24) and fat-free-mass-index (15). Probes in genes SNED1(IRE-BP1), KLHL6, WDR51A(POC1A), CYTH4-ELFN2, CFLAR, PRDM14, SOS1, ZNF643(ZFP69B), ST6GAL1, C3orf70, CILP2, MLLT4 and ncRNA LOC101929268 remained significantly associated after Bonferroni-correction of P-values. We provide novel evidence linking DNAm with (i) altered lipid and glucose metabolism, (ii) diabetes and (iii) body size and composition in children. Both common and specific epigenetic signatures among measures were also revealed. The causal direction with phenotypic measures and stability of DNAm variants throughout the life course remains unclear and longitudinal analysis in other populations is required. These findings give support for potential epigenetic programming of body composition and obesity.