Paediatrics (RCH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 14
  • Item
    Thumbnail Image
    Bioactivity in an Aggrecan 32-mer Fragment Is Mediated via Toll-like Receptor 2
    Lees, S ; Golub, SB ; Last, K ; Zeng, W ; Jackson, DC ; Sutton, P ; Fosang, AJ (WILEY, 2015-05)
    OBJECTIVE: To determine whether an aggrecan 32-mer fragment derived from dual ADAMTS and matrix metalloproteinase (MMP) cleavage in the aggrecan interglobular domain was bioactive and, if so, to elucidate its mechanism of action. METHODS: Mouse primary chondrocytes, synovial fibroblasts, or peritoneal macrophages, human primary chondrocytes, and cells or cell lines from myeloid differentiation factor 88 (MyD88)-deficient and Toll-like receptor 2 (TLR-2)-deficient mice were stimulated with synthetic mouse 32-mer peptide, human 32-mer peptide, a 32-mer scrambled peptide, or native, glycosylated 32-mer peptide. Cells stimulated with 32-mer peptide were analyzed for changes in messenger RNA (mRNA) expression by quantitative polymerase chain reaction. Conditioned medium was analyzed for levels of interleukin-6 protein by an AlphaLISA or for levels of MMP-3 and MMP-13 protein by Western blotting. NF-κB activation was measured in a luciferase reporter assay. RESULTS: Treatment of mouse cells or cartilage explants with 32-mer peptide or scrambled peptide revealed that the 32-mer peptide, but not the scrambled peptide, had antianabolic, procatabolic, and proinflammatory bioactivity in vitro. Chondrocytes, synovial fibroblasts, and macrophages from MyD88-deficient mice failed to respond to 32-mer peptide stimulation. A macrophage cell line derived from TLR-2-deficient mice also failed to respond to 32-mer peptide stimulation. Stimulation of human chondrocytes with human 32-mer peptide increased the expression of catabolic markers at the mRNA and protein levels. Mouse and human 32-mer peptide stimulated NF-κB activation in a TLR-2-dependent reporter assay, and the response of chondrocytes from both species to native, glycosylated 32-mer peptide was similar to the response to synthetic peptides. CONCLUSION: The aggrecan 32-mer fragment is a novel endogenous ligand of TLR-2 with the potential to accelerate cartilage destruction in vivo.
  • Item
    No Preview Available
    Mutations in the interglobular domain of aggrecan alter matrix metalloproteinase and aggrecanase cleavage patterns - Evidence that matrix metalloproteinase cleavage interferes with aggrecanase activity
    Mercuri, FA ; Maciewicz, RA ; Tart, J ; Last, K ; Fosang, AJ (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2000-10-20)
    We have expressed G1-G2 mutants with amino acid changes at the DIPEN(341) downward arrow(342)FFGVG and ITEGE(373) downward arrow(374)ARGSV cleavage sites, in order to investigate the relationship between matrix metalloproteinase (MMP) and aggrecanase activities in the interglobular domain (IGD) of aggrecan. The mutation DIPEN(341) to DIGSA(341) partially blocked cleavage by MMP-13 and MMP-8 at the MMP site, while the mutation (342)FFGVG to (342)GTRVG completely blocked cleavage at this site by MMP-1, -2, -3, -7, -8, -9, -13, -14. Each of the MMP cleavage site mutants, including a four-amino acid deletion mutant lacking residues ENFF(343), were efficiently cleaved by aggrecanase, suggesting that the primary sequence at the MMP site had no effect on aggrecanase activity in the IGD. The mutation (374)ARGSV to (374)NVYSV completely blocked cleavage at the aggrecanase site by aggrecanase, MMP-8 and atrolysin C but had no effect on the ability of MMP-8 and MMP-13 to cleave at the Asn(341) downward arrowPhe bond. Susceptibility to atrolysin C cleavage at the MMP site was conferred in the DIGSA(341) mutant but absent in the wild-type, (342)GTRVG, (374)NVYSV, and deletion mutants. To further explore the relationship between MMP and aggrecanase activities, sequential digest experiments were done in which MMP degradation products were subsequently digested with aggrecanase and vice versa. Aggrecanase-derived G1 domains with ITEGE(373) C termini were viable substrates for MMPs; however, MMP-derived G2 fragments were resistant to cleavage by aggrecanase. A 10-mer peptide FVDIPENFFG, which is a substrate analogue for the MMP cleavage site, inhibited aggrecanase cleavage at the Glu(373) downward arrowAla bond. This study demonstrates that MMPs and aggrecanase have unique substrate recognition in the IGD of aggrecan and suggests that sequences at the C terminus of the DIPEN(341) G1 domain may be important for regulating aggrecanase cleavage.
  • Item
    No Preview Available
    Antibodies to MMP-cleaved aggrecan.
    Fosang, AJ ; Last, K ; Jackson, DC ; Brown, L (Humana Press, 2001)
  • Item
    No Preview Available
    Matrix metalloproteinases are not essential for aggrecan turnover during normal skeletal growth and development
    Little, CB ; Meeker, CT ; Hembry, RM ; Sims, NA ; Lawlor, KE ; Golub, SB ; Last, K ; Fosang, AJ (AMER SOC MICROBIOLOGY, 2005-04)
    The growth plate is a transitional region of cartilage and highly diversified chondrocytes that controls long bone formation. The composition of growth plate cartilage changes markedly from the epiphysis to the metaphysis, notably with the loss of type II collagen, concomitant with an increase in MMP-13; type X collagen; and the C-propeptide of type II collagen. In contrast, the fate of aggrecan in the growth plate is not clear: there is biosynthesis and loss of aggrecan from hypertrophic cartilage, but the mechanism of loss is unknown. All matrix metalloproteinases (MMPs) cleave aggrecan between amino acids N341 and F342 in the proteinase-sensitive interglobular domain (IGD), and MMPs in the growth plate are thought to have a role in aggrecanolysis. We have generated mice with aggrecan resistant to proteolysis by MMPs in the IGD and found that the mice develop normally with no skeletal deformities. The mutant mice do not accumulate aggrecan, and there is no significant compensatory proteolysis occurring at alternate sites in the IGD. Our studies reveal that MMP cleavage in this key region is not a predominant mechanism for removing aggrecan from growth plate cartilage.
  • Item
    Thumbnail Image
    Keratan sulphate in the interglobular domain has a microstructure that is distinct from keratan sulphate elsewhere on pig aggrecan
    Fosang, AJ ; Last, K ; Poon, CJ ; Plaas, AH (ELSEVIER SCIENCE BV, 2009-01)
    The microstructure of keratan sulphate purified from the interglobular domain, the keratan sulphate-rich region and total aggrecan was compared using fluorophore-assisted-carbohydrate-electrophoresis. Keratan sulphate in the interglobular domain was substantially less sulphated than keratan sulphate elsewhere on aggrecan, based on the ratio of unsulphated: monosulphated disaccharides generated by endo-beta-galactosidase digestion, and the ratio of monosulphated: disulphated disaccharides generated by keratanase II digestion. The ratio of unsulphated: monosulphated: disulphated disaccharides was 1:4:5 for keratan sulphate from total aggrecan and the keratan sulphate-rich region, but only 1:0.9:0.8 for the interglobular domain. These results show that keratan sulphate in the interglobular domain of pig aggrecan has a microstructure that is distinct from keratan sulphate in the keratan sulphate-rich region.
  • Item
    No Preview Available
    Cytokine-Induced Increases in ADAMTS-4 Messenger RNA Expression Do Not Lead to Increased Aggrecanase Activity in ADAMTS-5-Deficient Mice
    Rogerson, FM ; Chung, YM ; Deutscher, ME ; Last, K ; Fosang, AJ (WILEY, 2010-11)
    OBJECTIVE: To compare the regulation of aggrecanase messenger RNA (mRNA) and enzyme activity by proinflammatory cytokines in primary mouse chondrocytes. METHODS: Primary chondrocytes were isolated from knee epiphyses of 6-8-day-old mice and cultured as monolayers. The cells were incubated with tumor necrosis factor α (TNFα), oncostatin M (OSM), or interleukin-6 (IL-6)/soluble IL-6 receptor, and mRNA levels were measured by quantitative polymerase chain reaction at various time points. To measure aggrecanase activity, the cells were incubated with cytokine in the presence of exogenous aggrecan, and substrate cleavage was measured using antibodies to neoepitopes. RESULTS: Expression of both ADAMTS-4 and ADAMTS-5 mRNA was up-regulated by TNFα and OSM. ADAMTS-5 mRNA expression was also up-regulated by IL-6. Treatment of wild-type mouse chondrocytes with each of the 3 cytokines increased cleavage of aggrecan at Glu(373)↓(374) Ala and Glu(1670)↓(1671) Gly; in chondrocytes lacking ADAMTS-5 activity, there was negligible cleavage at either site despite increased expression of ADAMTS-4 mRNA in the presence of TNFα or OSM. None of the cytokines substantially altered mRNA expression of ADAMTS-1 or ADAMTS-9. CONCLUSION: Despite substantial increases in the expression of ADAMTS-4 mRNA induced by TNFα and OSM, these cytokines induced little if any increase in aggrecanolysis in ADAMTS-5-deficient mouse chondrocytes. Our data show a poor correlation between the level of cytokine-induced ADAMTS-4 mRNA expression and the level of aggrecan-degrading activity in cultured chondrocytes.
  • Item
  • Item
    No Preview Available
    BIOACTIVITY IN AN AGGRECAN 32MER FRAGMENT IS MEDIATED VIA TOLL-LIKE RECEPTORS
    Fosang, AJ ; Golub, SB ; Last, K ; Lees, S ; Wilson, R ; Aspberg, A ; Little, CB ; Sutton, P (ELSEVIER SCI LTD, 2014-04)
  • Item
    No Preview Available
    N-Linked keratan sulfate in the aggrecan interglobular domain potentiates aggrecanase activity
    Poon, CJ ; Plaas, AH ; Keene, DR ; McQuillan, DJ ; Last, K ; Fosang, AJ (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2005-06-24)
    Keratan sulfate is thought to influence the cleavage of aggrecan by metalloenzymes. We have therefore produced a recombinant substrate, substituted with keratan sulfate, suitable for the study of aggrecanolysis in vitro. Recombinant human G1-G2 was produced in primary bovine keratocytes using a vaccinia virus expression system. Following purification and digestion with specific hydrolases, fluorophore-assisted carbohydrate electrophoresis was used to confirm the presence of the monosulfated Gal-GlcNAc6S and GlcNAc6s-Gal disaccharides and the disulfated Gal6S-GlcNAc6S disaccharides of keratan sulfate. Negligible amounts of fucose or sialic acid were detected, and the level of unsulfated disaccharides was minimal. Treatment with keratanases reduced the size of the recombinant G1-G2 by approximately 5 kDa on SDS-PAGE. Treatment with N-glycosidase F also reduced the size of G1-G2 by approximately 5 kDa and substantially reduced G1-G2 immunoreactivity with monoclonal antibody 5-D-4, indicating that keratan sulfate on the recombinant protein is N-linked. Cleavage of G1-G2 by aggrecanase was markedly reduced when keratan sulfate chains were removed by treatment with keratanase, keratanase II, endo-beta-galactosidase, or N-glycosidase F. These results indicate that modification of oligosaccharides in the aggrecan interglobular domain with keratan sulfate, most likely at asparagine residue 368, potentiates aggrecanase activity in this part of the core protein.
  • Item
    No Preview Available
    ADAMTS4 cleaves at the aggrecanase site (Glu373-Ala374) and secondarily at the matrix metalloproteinase site (Asn341-Phe342) in the aggrecan interglobular domain
    Westling, J ; Fosang, AJ ; Last, K ; Thompson, VP ; Tomkinson, KN ; Hebert, T ; McDonagh, T ; Collins-Racie, LA ; LaVallie, ER ; Morris, EA ; Sandy, JD (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2002-05-03)
    Two major proteolytic cleavages, one at NITEGE(373)/A(374)RGSVI and the other at VDIPEN(341)/F(342)FGVGG, have been shown to occur in vivo within the interglobular domain of aggrecan. The Glu(373)-Ala(374) site is cleaved in vitro by aggrecanase-1 (ADAMTS4) and aggrecanase-2 (ADAMTS5), whereas the other site, at Asn(341)-Phe(342), is efficiently cleaved by matrix metalloproteinases (MMPs) and by cathepsin B at low pH. Accordingly, the presence of the cleavage products globular domain 1 (G1)-NITEGE(373) and G1-VDIPEN(341) in vivo has been widely interpreted as evidence for the specific involvement of ADAMTS enzymes and MMPs/cathepsin B, respectively, in aggrecan proteolysis in situ. We show here, in digests with native human aggrecan, that purified ADAMTS4 cleaves primarily at the Glu(373)-Ala(374) site, but also, albeit slowly and secondarily, at the Asn(341)-Phe(342) site. Cleavage at the Asn(341)-Phe(342) site in these incubations was due to bona fide ADAMTS4 activity (and not a contaminating MMP) because the cleavage was inhibited by TIMP-3 (a potent inhibitor of ADAMTS4), but not by TIMP-1 and TIMP-2, at concentrations that totally blocked MMP-3-mediated cleavage at this site. Digestion of recombinant human G1-G2 (wild-type and cleavage site mutants) confirmed the dual activity of ADAMTS4 and supported the idea that the enzyme cleaves primarily at the Glu(373)-Ala(374) site and secondarily generates G1-VDIPEN(341) by removal of the Phe(342)-Glu(373) peptide from G1-NITEGE(373). These results show that G1-VDIPEN(341) is a product of both MMP and ADAMTS4 activities and challenge the widely held assumption that this product represents a specific indicator of MMP- or cathepsin B-mediated aggrecan degradation.