Paediatrics (RCH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    No Preview Available
    Pathogenic Variants in GPC4 Cause Keipert Syndrome
    Amor, DJ ; Stephenson, SEM ; Mustapha, M ; Mensah, MA ; Ockeloen, CW ; Lee, WS ; Tankard, RM ; Phelan, DG ; Shinawi, M ; de Brouwer, APM ; Pfundt, R ; Dowling, C ; Toler, TL ; Sutton, VR ; Agolini, E ; Rinelli, M ; Capolino, R ; Martinelli, D ; Zampino, G ; Dumic, M ; Reardon, W ; Shaw-Smith, C ; Leventer, RJ ; Delatycki, MB ; Kleefstra, T ; Mundlos, S ; Mortier, G ; Bahlo, M ; Allen, NJ ; Lockhart, PJ (CELL PRESS, 2019-05-02)
    Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.
  • Item
    Thumbnail Image
    Variants in ACTG2 underlie a substantial number of Australasian patients with primary chronic intestinal pseudo-obstruction
    Ravenscroft, G ; Pannell, S ; O'Grady, G ; Ong, R ; Ee, HC ; Faiz, F ; Marns, L ; Goel, H ; Kumarasinghe, P ; Sollis, E ; Sivadorai, P ; Wilson, M ; Magoffin, A ; Nightingale, S ; Freckmann, M-L ; Kirk, EP ; Sachdev, R ; Lemberg, DA ; Delatycki, MB ; Kamm, MA ; Basnayake, C ; Lamont, PJ ; Amor, DJ ; Jones, K ; Schilperoort, J ; Davis, MR ; Laing, NG (WILEY, 2018-09)
    BACKGROUND: Primary chronic intestinal pseudo-obstruction (CIPO) is a rare, potentially life-threatening disorder characterized by severely impaired gastrointestinal motility. The objective of this study was to examine the contribution of ACTG2, LMOD1, MYH11, and MYLK mutations in an Australasian cohort of patients with a diagnosis of primary CIPO associated with visceral myopathy. METHODS: Pediatric and adult patients with primary CIPO and suspected visceral myopathy were recruited from across Australia and New Zealand. Sanger sequencing of the genes encoding enteric gamma-actin (ACTG2) and smooth muscle leiomodin (LMOD1) was performed on DNA from patients, and their relatives, where available. MYH11 and MYLK were screened by next-generation sequencing. KEY RESULTS: We identified heterozygous missense variants in ACTG2 in 7 of 17 families (~41%) diagnosed with CIPO and its associated conditions. We also identified a previously unpublished missense mutation (c.443C>T, p.Arg148Leu) in one family. One case presented with megacystis-microcolon-intestinal hypoperistalsis syndrome in utero with subsequent termination of pregnancy at 28 weeks' gestation. All of the substitutions identified occurred at arginine residues. No likely pathogenic variants in LMOD1, MYH11, or MYLK were identified within our cohort. CONCLUSIONS AND INFERENCES: ACTG2 mutations represent a significant underlying cause of primary CIPO with visceral myopathy and associated phenotypes in Australasian patients. Thus, ACTG2 sequencing should be considered in cases presenting with hypoperistalsis phenotypes with suspected visceral myopathy. It is likely that variants in other genes encoding enteric smooth muscle contractile proteins will contribute further to the genetic heterogeneity of hypoperistalsis phenotypes.
  • Item
    Thumbnail Image
    Expanding the phenotypic spectrum of ARID1B-mediated disorders and identification of altered cell-cycle dynamics due to ARID1B haploinsufficiency
    Sim, JCH ; White, SM ; Fitzpatrick, E ; Wilson, GR ; Gillies, G ; Pope, K ; Mountford, HS ; Torring, PM ; Mckee, S ; Vulto-van Silfhout, AT ; Jhangiani, SN ; Muzny, DM ; Leventer, RJ ; Delatycki, MB ; Amor, DJ ; Lockhart, PJ (BMC, 2014-03-27)
    BACKGROUND: Mutations in genes encoding components of the Brahma-associated factor (BAF) chromatin remodeling complex have recently been shown to contribute to multiple syndromes characterised by developmental delay and intellectual disability. ARID1B mutations have been identified as the predominant cause of Coffin-Siris syndrome and have also been shown to be a frequent cause of nonsyndromic intellectual disability. Here, we investigate the molecular basis of a patient with an overlapping but distinctive phenotype of intellectual disability, plantar fat pads and facial dysmorphism. METHODS/RESULTS: High density microarray analysis of the patient demonstrated a heterozygous deletion at 6q25.3, which resulted in the loss of four genes including AT Rich Interactive Domain 1B (ARID1B). Subsequent quantitative real-time PCR analysis revealed ARID1B haploinsufficiency in the patient. Analysis of both patient-derived and ARID1B knockdown fibroblasts after serum starvation demonstrated delayed cell cycle re-entry associated with reduced cell number in the S1 phase. Based on the patient's distinctive phenotype, we ascertained four additional patients and identified heterozygous de novo ARID1B frameshift or nonsense mutations in all of them. CONCLUSIONS: This study broadens the spectrum of ARID1B associated phenotypes by describing a distinctive phenotype including plantar fat pads but lacking the hypertrichosis or fifth nail hypoplasia associated with Coffin-Siris syndrome. We present the first direct evidence in patient-derived cells that alterations in cell cycle contribute to the underlying pathogenesis of syndromes associated with ARID1B haploinsufficiency.
  • Item
    Thumbnail Image
    Neuropathology of childhood-onset basal ganglia degeneration caused by mutation of VAC14
    Stutterd, C ; Diakumis, P ; Bahlo, M ; Fernandez, MF ; Leventer, RJ ; Delatycki, M ; Amor, D ; Chow, CW ; Stephenson, S ; Meisler, MH ; Mclean, C ; Lockhart, PJ (WILEY, 2017-12)
    OBJECTIVE: To characterize the clinical features and neuropathology associated with recessive VAC14 mutations. METHODS: Whole-exome sequencing was used to identify the genetic etiology of a rapidly progressive neurological disease presenting in early childhood in two deceased siblings with distinct neuropathological features on post mortem examination. RESULTS: We identified compound heterozygous variants in VAC14 in two deceased siblings with early childhood onset of severe, progressive dystonia, and neurodegeneration. Their clinical phenotype is consistent with the VAC14-related childhood-onset, striatonigral degeneration recently described in two unrelated children. Post mortem examination demonstrated prominent vacuolation associated with degenerating neurons in the caudate nucleus, putamen, and globus pallidus, similar to previously reported ex vivo vacuoles seen in the late-endosome/lysosome of VAC14-deficient neurons. We identified upregulation of ubiquitinated granules within the cell cytoplasm and lysosomal-associated membrane protein (LAMP2) around the vacuole edge to suggest a process of vacuolation of lysosomal structures associated with active autophagocytic-associated neuronal degeneration. INTERPRETATION: Our findings reveal a distinct clinicopathological phenotype associated with recessive VAC14 mutations.
  • Item
    No Preview Available
    Severe childhood speech disorder: Gene discovery highlights transcriptional dysregulation
    Hildebrand, MS ; Jackson, VE ; Scerri, TS ; Van Reyk, O ; Coleman, M ; Braden, RO ; Turner, S ; Rigbye, KA ; Boys, A ; Barton, S ; Webster, R ; Fahey, M ; Saunders, K ; Parry-Fielder, B ; Paxton, G ; Hayman, M ; Coman, D ; Goel, H ; Baxter, A ; Ma, A ; Davis, N ; Reilly, S ; Delatycki, M ; Liegeois, FJ ; Connelly, A ; Gecz, J ; Fisher, SE ; Amor, DJ ; Scheffer, IE ; Bahlo, M ; Morgan, AT (LIPPINCOTT WILLIAMS & WILKINS, 2020-05-19)
    OBJECTIVE: Determining the genetic basis of speech disorders provides insight into the neurobiology of human communication. Despite intensive investigation over the past 2 decades, the etiology of most speech disorders in children remains unexplained. To test the hypothesis that speech disorders have a genetic etiology, we performed genetic analysis of children with severe speech disorder, specifically childhood apraxia of speech (CAS). METHODS: Precise phenotyping together with research genome or exome analysis were performed on children referred with a primary diagnosis of CAS. Gene coexpression and gene set enrichment analyses were conducted on high-confidence gene candidates. RESULTS: Thirty-four probands ascertained for CAS were studied. In 11/34 (32%) probands, we identified highly plausible pathogenic single nucleotide (n = 10; CDK13, EBF3, GNAO1, GNB1, DDX3X, MEIS2, POGZ, SETBP1, UPF2, ZNF142) or copy number (n = 1; 5q14.3q21.1 locus) variants in novel genes or loci for CAS. Testing of parental DNA was available for 9 probands and confirmed that the variants had arisen de novo. Eight genes encode proteins critical for regulation of gene transcription, and analyses of transcriptomic data found CAS-implicated genes were highly coexpressed in the developing human brain. CONCLUSION: We identify the likely genetic etiology in 11 patients with CAS and implicate 9 genes for the first time. We find that CAS is often a sporadic monogenic disorder, and highly genetically heterogeneous. Highly penetrant variants implicate shared pathways in broad transcriptional regulation, highlighting the key role of transcriptional regulation in normal speech development. CAS is a distinctive, socially debilitating clinical disorder, and understanding its molecular basis is the first step towards identifying precision medicine approaches.
  • Item
    No Preview Available
    Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes
    Fachal, L ; Aschard, H ; Beesley, J ; Barnes, DR ; Allen, J ; Kar, S ; Pooley, KA ; Dennis, J ; Michailidou, K ; Turman, C ; Soucy, P ; Lemacon, A ; Lush, M ; Tyrer, JP ; Ghoussaini, M ; Marjaneh, MM ; Jiang, X ; Agata, S ; Aittomaki, K ; Rosario Alonso, M ; Andrulis, IL ; Anton-Culver, H ; Antonenkova, NN ; Arason, A ; Arndt, V ; Aronson, KJ ; Arun, BK ; Auber, B ; Auer, PL ; Azzollini, J ; Balmana, J ; Barkardottir, RB ; Barrowdale, D ; Beeghly-Fadiel, A ; Benitez, J ; Bermisheva, M ; Bialkowska, K ; Blanco, AM ; Blomqvist, C ; Blot, W ; Bogdanova, N ; Bojesen, SE ; Bolla, MK ; Bonanni, B ; Borg, A ; Bosse, K ; Brauch, H ; Brenner, H ; Briceno, I ; Brock, IW ; Brooks-Wilson, A ; Bruening, T ; Burwinkel, B ; Buys, SS ; Cai, Q ; Caldes, T ; Caligo, MA ; Camp, NJ ; Campbell, I ; Canzian, F ; Carroll, JS ; Carter, BD ; Castelao, JE ; Chiquette, J ; Christiansen, H ; Chung, WK ; Claes, KBM ; Clarke, CL ; Collee, JM ; Cornelissen, S ; Couch, FJ ; Cox, A ; Cross, SS ; Cybulski, C ; Czene, K ; Daly, MB ; de la Hoya, M ; Devilee, P ; Diez, O ; Ding, YC ; Dite, GS ; Domchek, SM ; Doerk, T ; dos-Santos-Silva, I ; Droit, A ; Dubois, S ; Dumont, M ; Duran, M ; Durcan, L ; Dwek, M ; Eccles, DM ; Engel, C ; Eriksson, M ; Evans, DG ; Fasching, PA ; Fletcher, O ; Floris, G ; Flyger, H ; Foretova, L ; Foulkes, WD ; Friedman, E ; Fritschi, L ; Frost, D ; Gabrielson, M ; Gago-Dominguez, M ; Gambino, G ; Ganz, PA ; Gapstur, SM ; Garber, J ; Garcia-Saenz, JA ; Gaudet, MM ; Georgoulias, V ; Giles, GG ; Glendon, G ; Godwin, AK ; Goldberg, MS ; Goldgar, DE ; Gonzalez-Neira, A ; Tibiletti, MG ; Greene, MH ; Grip, M ; Gronwald, J ; Grundy, A ; Guenel, P ; Hahnen, E ; Haiman, CA ; Hakansson, N ; Hall, P ; Hamann, U ; Harrington, PA ; Hartikainen, JM ; Hartman, M ; He, W ; Healey, CS ; Heemskerk-Gerritsen, BAM ; Heyworth, J ; Hillemanns, P ; Hogervorst, FBL ; Hollestelle, A ; Hooning, MJ ; Hopper, JL ; Howell, A ; Huang, G ; Hulick, PJ ; Imyanitov, EN ; Isaacs, C ; Iwasaki, M ; Jager, A ; Jakimovska, M ; Jakubowska, A ; James, PA ; Janavicius, R ; Jankowitz, RC ; John, EM ; Johnson, N ; Jones, ME ; Jukkola-Vuorinen, A ; Jung, A ; Kaaks, R ; Kang, D ; Kapoor, PM ; Karlan, BY ; Keeman, R ; Kerin, MJ ; Khusnutdinova, E ; Kiiski, J ; Kirk, J ; Kitahara, CM ; Ko, Y-D ; Konstantopoulou, I ; Kosma, V-M ; Koutros, S ; Kubelka-Sabit, K ; Kwong, A ; Kyriacou, K ; Laitman, Y ; Lambrechts, D ; Lee, E ; Leslie, G ; Lester, J ; Lesueur, F ; Lindblom, A ; Lo, W-Y ; Long, J ; Lophatananon, A ; Loud, JT ; Lubinski, J ; MacInnis, RJ ; Maishman, T ; Makalic, E ; Mannermaa, A ; Manoochehri, M ; Manoukian, S ; Margolin, S ; Martinez, ME ; Matsuo, K ; Maurer, T ; Mavroudis, D ; Mayes, R ; McGuffog, L ; McLean, C ; Mebirouk, N ; Meindl, A ; Miller, A ; Miller, N ; Montagna, M ; Moreno, F ; Muir, K ; Mulligan, AM ; Munoz-Garzon, VM ; Muranen, TA ; Narod, SA ; Nassir, R ; Nathanson, KL ; Neuhausen, SL ; Nevanlinna, H ; Neven, P ; Nielsen, FC ; Nikitina-Zake, L ; Norman, A ; Offit, K ; Olah, E ; Olopade, O ; Olsson, H ; Orr, N ; Osorio, A ; Pankratz, VS ; Papp, J ; Park, SK ; Park-Simon, T-W ; Parsons, MT ; Paul, J ; Pedersen, IS ; Peissel, B ; Peshkin, B ; Peterlongo, P ; Peto, J ; Plaseska-Karanfilska, D ; Prajzendanc, K ; Prentice, R ; Presneau, N ; Prokofyeva, D ; Angel Pujana, M ; Pylkas, K ; Radice, P ; Ramus, SJ ; Rantala, J ; Rau-Murthy, R ; Rennert, G ; Risch, HA ; Robson, M ; Romero, A ; Rossing, M ; Saloustros, E ; Sanchez-Herrero, E ; Sandler, DP ; Santamarina, M ; Saunders, C ; Sawyer, EJ ; Scheuner, MT ; Schmidt, DF ; Schmutzler, RK ; Schneeweiss, A ; Schoemaker, MJ ; Schoettker, B ; Schuermann, P ; Scott, C ; Scott, RJ ; Senter, L ; Seynaeve, CM ; Shah, M ; Sharma, P ; Shen, C-Y ; Shu, X-O ; Singer, CF ; Slavin, TP ; Smichkoska, S ; Southey, MC ; Spinelli, JJ ; Spurdle, AB ; Stone, J ; Stoppa-Lyonnet, D ; Sutter, C ; Swerdlow, AJ ; Tamimi, RM ; Tan, YY ; Tapper, WJ ; Taylor, JA ; Teixeira, MR ; Tengstroem, M ; Teo, SH ; Terry, MB ; Teul, A ; Thomassen, M ; Thull, DL ; Tischkowitz, M ; Toland, AE ; Tollenaar, RAEM ; Tomlinson, I ; Torres, D ; Torres-Mejia, G ; Troester, MA ; Truong, T ; Tung, N ; Tzardi, M ; Ulmer, H-U ; Vachon, CM ; van Asperen, CJ ; van der Kolk, LE ; van Rensburg, EJ ; Vega, A ; Viel, A ; Vijai, J ; Vogel, MJ ; Wang, Q ; Wappenschmidt, B ; Weinberg, CR ; Weitzel, JN ; Wendt, C ; Wildiers, H ; Winqvist, R ; Wolk, A ; Wu, AH ; Yannoukakos, D ; Zhang, Y ; Zheng, W ; Hunter, D ; Pharoah, PDP ; Chang-Claude, J ; Garcia-Closas, M ; Schmidt, MK ; Milne, RL ; Kristensen, VN ; French, JD ; Edwards, SL ; Antoniou, AC ; Chenevix-Trench, G ; Simard, J ; Easton, DF ; Kraft, P ; Dunning, AM ; Mari, V ; Berthet, P ; Castera, L ; Vaur, D ; Lallaoui, H ; Bignon, Y-J ; Uhrhammer, N ; Bonadona, V ; Lasset, C ; Revillion, F ; Vennin, P ; Muller, D ; Gomes, DM ; Ingster, O ; Coupier, I ; Pujol, P ; Collonge-Rame, M-A ; Mortemousque, I ; Bera, O ; Rose, M ; Baurand, A ; Bertolone, G ; Faivre, L ; Dreyfus, H ; Leroux, D ; Venat-Bouvet, L ; Bezieau, S ; Delnatte, C ; Chiesa, J ; Gilbert-Dussardier, B ; Gesta, P ; Prieur, FP ; Bronner, M ; Sokolowska, J ; Coulet, F ; Boutry-Kryza, N ; Calender, A ; Giraud, S ; Leone, M ; Fert-Ferrer, S ; Jiao, Y ; Lesueur, FL ; Barouk-Simonet, E ; Bubien, V ; Longy, M ; Sevenet, N ; Gladieff, L ; Toulas, C ; Reimineras, A ; Sobol, H ; Bressac-de Paillerets, B ; Cabaret, O ; Caron, O ; Guillaud-Bataille, M ; Rouleau, E ; Belotti, M ; Buecher, B ; Caputo, S ; Colas, C ; De Pauw, A ; Fourme, E ; Gauthier-Villars, M ; Golmard, L ; Moncoutier, V ; Saule, C ; Donaldson, A ; Murray, A ; Brady, A ; Brewer, C ; Pottinger, C ; Miller, C ; Gallagher, D ; Gregory, H ; Cook, J ; Eason, J ; Adlard, J ; Barwell, J ; Ong, K-R ; Snape, K ; Walker, L ; Izatt, L ; Side, L ; Rogers, MT ; Porteous, ME ; Ahmed, M ; Morrison, PJ ; Brennan, P ; Eeles, R ; Davidson, R ; Sexton, A ; Christian, A ; Trainer, A ; Spigelman, A ; Fellows, A ; Shelling, A ; De Fazio, A ; Blackburn, A ; Crook, A ; Meiser, B ; Patterson, B ; Clarke, C ; Hunt, C ; Scott, C ; Amor, D ; Marsh, D ; Edkins, E ; Salisbury, E ; Haan, E ; Neidermayr, E ; Macrea, F ; Farshid, G ; Lindeman, G ; Trench, G ; Mann, G ; Giles, G ; Gill, G ; Thorne, H ; Hickie, I ; Winship, I ; Flanagan, J ; Kollias, J ; Visvader, J ; Taylor, J ; Burke, J ; Saunus, J ; Forbes, J ; Hopper, J ; French, J ; Tucker, K ; Wu, K ; Phillips, K ; Lipton, L ; Andrews, L ; Lobb, L ; Walker, L ; Kentwell, M ; Spurdle, M ; Cummings, M ; Gleeson, M ; Harris, M ; Jenkins, M ; Young, MA ; Delatycki, M ; Wallis, M ; Burgess, M ; Price, M ; Brown, M ; Southey, M ; Bogwitz, M ; Field, M ; Friedlander, M ; Gattas, M ; Saleh, M ; Hayward, N ; Pachter, N ; Cohen, P ; Duijf, P ; James, P ; Simpson, P ; Fong, P ; Butow, P ; Williams, R ; Kefford, R ; Scott, R ; Milne, R ; Balleine, R ; Dawson, S ; Lok, S ; O'Connell, S ; Greening, S ; Nightingale, S ; Edwards, S ; Fox, S ; Mclachlan, S-A ; Lakhani, S ; Antill, Y ; Aalfs, C ; Meijers-Heijboer, H ; van Engelen, K ; Gille, H ; Boere, I ; Collee, M ; van Deurzen, C ; Hooning, M ; Obdeijn, I-M ; van den Ouweland, A ; Seynaeve, C ; Siesling, S ; Verloop, J ; van Asperen, C ; van Cronenburg, T ; Blok, R ; de Boer, M ; Garcia, EG ; Adank, M ; Hogervorst, F ; Jenner, D ; van Leeuwen, F ; Rookus, M ; Russell, N ; Schmidt, M ; van den Belt-Dusebout, S ; Kets, C ; Mensenkamp, A ; de Bock, T ; van Der Hout, A ; Mourits, M ; Oosterwijk, J ; Ausems, M ; Koudijs, M ; Marsh, D ; Baxter, R ; Yip, D ; Carpenter, J ; Davis, A ; Pathmanathan, N ; Simpson, P ; Graham, D ; Sachchithananthan, M (NATURE RESEARCH, 2020-01-07)
    Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
  • Item
    Thumbnail Image
    Evaluating systematic reanalysis of clinical genomic data in rare disease from single center experience and literature review
    Tan, NB ; Stapleton, R ; Stark, Z ; Delatycki, MB ; Yeung, A ; Hunter, MF ; Amor, DJ ; Brown, NJ ; Stutterd, CA ; McGillivray, G ; Yap, P ; Regan, M ; Chong, B ; Fanjul Fernandez, M ; Marum, J ; Phelan, D ; Pais, LS ; White, SM ; Lunke, S ; Tan, TY (WILEY, 2020-11)
    Background Our primary aim was to evaluate the systematic reanalysis of singleton exome sequencing (ES) data for unsolved cases referred for any indication. A secondary objective was to undertake a literature review of studies examining the reanalysis of genomic data from unsolved cases. Methods We examined data from 58 unsolved cases referred between June 2016 and March 2017. First reanalysis at 4–13 months after the initial report considered genes newly associated with disease since the original analysis; second reanalysis at 9–18 months considered all disease‐associated genes. At 25–34 months we reviewed all cases and the strategies which solved them. Results Reanalysis of existing ES data alone at two timepoints did not yield new diagnoses. Over the same timeframe, 10 new diagnoses were obtained (17%) from additional strategies, such as microarray detection of copy number variation, repeat sequencing to improve coverage, and trio sequencing. Twenty‐seven peer‐reviewed articles were identified on the literature review, with a median new diagnosis rate via reanalysis of 15% and median reanalysis timeframe of 22 months. Conclusion Our findings suggest that an interval of greater than 18 months from the original report may be optimal for reanalysis. We also recommend a multi‐faceted strategy for cases remaining unsolved after singleton ES.
  • Item
    Thumbnail Image
    Bioinformatics-Based Identification of Expanded Repeats: A Non-reference Intronic Pentamer Expansion in RFC1 Causes CANVAS
    Rafehi, H ; Szmulewicz, DJ ; Bennett, MF ; Sobreira, NLM ; Pope, K ; Smith, KR ; Gillies, G ; Diakumis, P ; Dolzhenko, E ; Eberle, MA ; Garcia Barcina, M ; Breen, DP ; Chancellor, AM ; Cremer, PD ; Delatycki, MB ; Fogel, BL ; Hackett, A ; Halmagyi, GM ; Kapetanovic, S ; Lang, A ; Mossman, S ; Mu, W ; Patrikios, P ; Perlman, SL ; Rosemergy, I ; Storey, E ; Watson, SRD ; Wilson, MA ; Zee, DS ; Valle, D ; Amor, DJ ; Bahlo, M ; Lockhart, PJ (CELL PRESS, 2019-07-03)
    Genomic technologies such as next-generation sequencing (NGS) are revolutionizing molecular diagnostics and clinical medicine. However, these approaches have proven inefficient at identifying pathogenic repeat expansions. Here, we apply a collection of bioinformatics tools that can be utilized to identify either known or novel expanded repeat sequences in NGS data. We performed genetic studies of a cohort of 35 individuals from 22 families with a clinical diagnosis of cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS). Analysis of whole-genome sequence (WGS) data with five independent algorithms identified a recessively inherited intronic repeat expansion [(AAGGG)exp] in the gene encoding Replication Factor C1 (RFC1). This motif, not reported in the reference sequence, localized to an Alu element and replaced the reference (AAAAG)11 short tandem repeat. Genetic analyses confirmed the pathogenic expansion in 18 of 22 CANVAS-affected families and identified a core ancestral haplotype, estimated to have arisen in Europe more than twenty-five thousand years ago. WGS of the four RFC1-negative CANVAS-affected families identified plausible variants in three, with genomic re-diagnosis of SCA3, spastic ataxia of the Charlevoix-Saguenay type, and SCA45. This study identified the genetic basis of CANVAS and demonstrated that these improved bioinformatics tools increase the diagnostic utility of WGS to determine the genetic basis of a heterogeneous group of clinically overlapping neurogenetic disorders.
  • Item
    Thumbnail Image
    Development and validation of a targeted gene sequencing panel for application to disparate cancers
    McCabe, MJ ; Gauthier, M-EA ; Chan, C-L ; Thompson, TJ ; De Sousa, SMC ; Puttick, C ; Grady, JP ; Gayevskiy, V ; Tao, J ; Ying, K ; Cipponi, A ; Deng, N ; Swarbrick, A ; Thomas, ML ; kConFab, ; Lord, RV ; Johns, AL ; Kohonen-Corish, M ; O'Toole, SA ; Clark, J ; Mueller, SA ; Gupta, R ; McCormack, AI ; Dinger, ME ; Cowley, MJ (Nature Publishing Group, 2019-11-19)
    Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour's molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy.
  • Item
    Thumbnail Image
    Paternal retraction of a fragile X allele to normal size, showing normal function over two generations
    Bartlett, E ; Archibald, AD ; Francis, D ; Ling, L ; Thomas, R ; Chandler, G ; Ward, L ; O'Farrell, G ; Pandelache, A ; Delatycki, MB ; Bennetts, BH ; Ho, G ; Fisk, K ; Baker, EK ; Amor, DJ ; Godler, DE (WILEY, 2022-01)
    The FMR1 premutation (PM:55-199 CGG) is associated with fragile X-associated tremor/ataxia syndrome (FXTAS) and when maternally transmitted is at risk of expansion to a hypermethylated full mutation (FM: ≥ 200 CGG) that causes fragile X syndrome (FXS). We describe a maternally transmitted PM (77 CGG) that was passed to a son (103 CGG), and to a daughter (220-1822 CGG), who were affected with FXTAS and FXS, respectively. The male with the PM showed low-level mosaicism for normal size of 30 and 37 CGG. This male had two offspring: one female mosaic for PM and FM (56, 157, >200 CGG) and another with only a 37 CGG allele detected in multiple tissues, neither with a clinical phenotype. The female with the 37 CGG allele showed normal levels of FMR1 methylation and mRNA and passed this 37 CGG allele to one of her daughters, who was also unaffected. These findings show that post-zygotic paternal retraction can lead to low-level mosaicism for normal size alleles, with these normal alleles being functional when passed over two generations.