- Paediatrics (RCH) - Research Publications
Paediatrics (RCH) - Research Publications
Permanent URI for this collection
3153 results
Filters
Settings
Statistics
Citations
Search Results
Now showing
1 - 10 of 3153
-
ItemHigh-level mobility skills in children and adolescents with traumatic brain injuryKissane, AL ; Eldridge, BJ ; Kelly, S ; Vidmar, S ; Galea, MP ; Williams, GP (TAYLOR & FRANCIS INC, 2015-12-06)AIM: To evaluate the reliability, validity and responsiveness of the High-level Mobility Assessment Tool (HiMAT) in children and adolescents with traumatic brain injury (TBI) and to compare the mobility skills of children with TBI to those of healthy peers. METHOD: The mobility skills of 52 children with moderate and severe TBI (36 males; mean age = 12 years, range = 6-17) were assessed using the HiMAT and the Pediatric Evaluation of Disability Inventory (PEDI). Inter-rater reliability, re-test reliability and responsiveness of the HiMAT were evaluated in sub-groups by comparing results scored at several time-points. The HiMAT scores of children with TBI were compared with those of a healthy comparative cohort. RESULTS: The HiMAT demonstrated excellent inter-rater reliability (ICC = 0.93), re-test reliability (ICC = 0.98) and responsiveness to change (p = 0.002). The PEDI demonstrated a ceiling effect in mobility assessment of ambulant children with TBI. The HiMAT scores of children with TBI were lower than those of their healthy peers (p < 0.001). INTERPRETATION: The HiMAT is a reliable, valid and sensitive measure of high-level mobility skills following childhood TBI. The high-level mobility skills of children with TBI are less proficient than their peers.
-
ItemNew Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography.Poropat, SF ; Mannion, PD ; Upchurch, P ; Hocknull, SA ; Kear, BP ; Kundrát, M ; Tischler, TR ; Sloan, T ; Sinapius, GHK ; Elliott, JA ; Elliott, DA (Springer Science and Business Media LLC, 2016-10-20)Australian dinosaurs have played a rare but controversial role in the debate surrounding the effect of Gondwanan break-up on Cretaceous dinosaur distribution. Major spatiotemporal gaps in the Gondwanan Cretaceous fossil record, coupled with taxon incompleteness, have hindered research on this effect, especially in Australia. Here we report on two new sauropod specimens from the early Late Cretaceous of Queensland, Australia, that have important implications for Cretaceous dinosaur palaeobiogeography. Savannasaurus elliottorum gen. et sp. nov. comprises one of the most complete Cretaceous sauropod skeletons ever found in Australia, whereas a new specimen of Diamantinasaurus matildae includes the first ever cranial remains of an Australian sauropod. The results of a new phylogenetic analysis, in which both Savannasaurus and Diamantinasaurus are recovered within Titanosauria, were used as the basis for a quantitative palaeobiogeographical analysis of macronarian sauropods. Titanosaurs achieved a worldwide distribution by at least 125 million years ago, suggesting that mid-Cretaceous Australian sauropods represent remnants of clades which were widespread during the Early Cretaceous. These lineages would have entered Australasia via dispersal from South America, presumably across Antarctica. High latitude sauropod dispersal might have been facilitated by Albian-Turonian warming that lifted a palaeoclimatic dispersal barrier between Antarctica and South America.
-
ItemNew Mid-Cretaceous (latest Albian) dinosaurs fromWinton, Queensland, Australia.Hocknull, SA ; White, MA ; Tischler, TR ; Cook, AG ; Calleja, ND ; Sloan, T ; Elliott, DA ; Sereno, P (Public Library of Science (PLoS), 2009-07-03)BACKGROUND: Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of dinosaurian groups, including groups previously considered to have had Gondwanan origins, such as the titanosaurs and carcharodontosaurids. METHODOLOGY/PRINCIPAL FINDINGS: We describe three new dinosaurs from the late Early Cretaceous (latest Albian) Winton Formation of eastern Australia, including; Wintonotitan wattsi gen. et sp. nov., a basal titanosauriform; Diamantinasaurus matildae gen. et sp. nov., a derived lithostrotian titanosaur; and Australovenator wintonensis gen. et sp. nov., an allosauroid. We compare an isolated astragalus from the Early Cretaceous of southern Australia; formerly identified as Allosaurus sp., and conclude that it most-likely represents Australovenator sp. CONCLUSION/SIGNIFICANCE: The occurrence of Australovenator from the Aptian to latest Albian confirms the presence in Australia of allosauroids basal to the Carcharodontosauridae. These new taxa, along with the fragmentary remains of other taxa, indicate a diverse Early Cretaceous sauropod and theropod fauna in Australia, including plesiomorphic forms (e.g. Wintonotitan and Australovenator) and more derived forms (e.g. Diamantinasaurus).
-
ItemNew Australovenator hind limb elements pertaining to the holotype reveal the most complete Neovenatorid leg.White, MA ; Benson, RBJ ; Tischler, TR ; Hocknull, SA ; Cook, AG ; Barnes, DG ; Poropat, SF ; Wooldridge, SJ ; Sloan, T ; Sinapius, GHK ; Elliott, DA ; Dodson, P (Public Library of Science (PLoS), 2013)We report new skeletal elements pertaining to the same individual which represents the holotype of Australovenator wintonensis, from the 'Matilda Site' in the Winton Formation (Upper Cretaceous) of western Queensland. The discovery of these new elements means that the hind limb of Australovenator is now the most completely understood hind limb among Neovenatoridae. The new hind limb elements include: the left fibula; left metatarsal IV; left pedal phalanges I-2, II-1, III-4, IV-2, IV-3; and right pedal phalanges, II-2 and III-1. The detailed descriptions are supported with three dimensional figures. These coupled with the completeness of the hind limb will increase the utility of Australovenator in comparisons with less complete neovenatorid genera. These specimens and the previously described hind limb elements of Australovenator are compared with other theropods classified as neovenatorids (including Neovenator, Chilantaisaurus, Fukuiraptor, Orkoraptor and Megaraptor). Hind limb length proportion comparisons indicate that the smaller neovenatorids Australovenator and Fukuiraptor possess more elongate and gracile hind limb elements than the larger Neovenator and Chilantaisaurus. Greater stride lengths to body size exist in both Fukuiraptor and Australovenator with the femur discovered to be proportionally shorter the rest of the hind limb length. Additionally Australovenator is identified as possessing the most elongate metatarsus. The metatarsus morphology varies with body size. The larger neoventorids possess a metatarsus with greater width but shorter length compared to smaller forms.
-
ItemNew forearm elements discovered of holotype specimen Australovenator wintonensis from Winton, Queensland, Australia.White, MA ; Cook, AG ; Hocknull, SA ; Sloan, T ; Sinapius, GHK ; Elliott, DA ; Dodson, P (Public Library of Science (PLoS), 2012)New skeletal elements are reported of the holotype specimen Australovenator wintonensis, from the type locality, near Winton, central western Queensland. New elements include left and right humeri, right radius, right radiale, right distal carpal 1, near complete right metacarpal I, left manual phalanx II-1, left manual phalanx II-2, near complete left manual phalanx II-3 and a left manual phalanx III-3. These new elements combined with those previously described are compared against other neovenatorids.
-
ItemThe dentary of Australovenator wintonensis (Theropoda, Megaraptoridae); implications for megaraptorid dentition.White, MA ; Bell, PR ; Cook, AG ; Poropat, SF ; Elliott, DA (PeerJ, 2015)Megaraptorid theropods were an enigmatic group of medium-sized predatory dinosaurs, infamous for the hypertrophied claw on the first manual digit. Megaraptorid dentition is largely restricted to isolated teeth found in association with skeletal parts; however, the in situ maxillary dentition of Megaraptor was recently described. A newly discovered right dentary pertaining to the Australovenator holotype preserves in situ dentition, permitting unambiguous characterisation of the dentary tooth morphology. The new jaw is virtually complete, with an overall elongate, shallow profile, and fifteen visible in situ teeth at varying stages of eruption. In situ teeth confirm Australovenator exhibited modest pseudoheterodonty, recurved lateral teeth with a serrate distal carina and reduced mesial carina, similar to other megaraptorids. Australovenator also combines of figure-of-eight basal cross-section with a lanceolate shape due to the presence of labial and lingual depressions and the lingual twist of the distal carina. Computed tomography and three-dimensional imagery provided superior characterisation of the dentary morphology and enabled an accurate reconstruction to a pre-fossilised state. The newly established dental morphology also afforded re-evaluation of isolated theropod teeth discovered at the Australovenator holotype locality and from several additional Winton Formation localities. The isolated Winton teeth are qualitatively and quantitatively similar to the in situ dentary teeth of Australovenator, but are also morphometrically similar to Abelisauridae, Allosauridae, Coelophysoidea, Megalosauridae and basal Tyrannosauroidea. Qualitative characters, however, clearly distinguish the teeth of Australovenator and the isolated Winton teeth from all other theropods. Evidence from teeth suggests megaraptorids were the dominant predators in the Winton Formation, which contrasts with other penecontemporaneous Gondwanan ecosystems.
-
ItemFerrodraco lentoni gen. et sp. nov., a new ornithocheirid pterosaur from the Winton Formation (Cenomanian-lower Turonian) of Queensland, Australia.Pentland, AH ; Poropat, SF ; Tischler, TR ; Sloan, T ; Elliott, RA ; Elliott, HA ; Elliott, JA ; Elliott, DA (Springer Science and Business Media LLC, 2019-10-03)The Australian pterosaur record is poor by world standards, comprising fewer than 20 fragmentary specimens. Herein, we describe the new genus and species Ferrodraco lentoni gen. et sp. nov., based on the most complete pterosaur specimen ever found in Australia, and the first reported from the Winton Formation (Cenomanian-lower Turonian). The presence of premaxillary and mandibular crests, and spike-shaped teeth with subcircular bases, enable Ferrodraco to be referred to Anhangueria. Ferrodraco can be distinguished from all other anhanguerian pterosaurs based on two dental characters: the first premaxillary and mandibular tooth pairs are small; and the fourth-seventh tooth pairs are smaller than the third and eighth ones. Ferrodraco was included in a phylogenetic analysis of Pterosauria and resolved as the sister taxon to Mythunga camara (upper Albian Toolebuc Formation, Australia), with that clade occupying the most derived position within Ornithocheiridae. Ornithocheirus simus (Albian Cambridge Greensand, England), Coloborhynchus clavirostris (Valanginian Hastings Sands, England), and Tropeognathus mesembrinus (upper Aptian-lower Albian Romualdo Formation, Brazil) were resolved as successive sister taxa, which suggests that ornithocheirids were cosmopolitan during the Albian-Cenomanian. Furthermore, the stratigraphic age of Ferrodraco lentoni (Cenomanian-lower Turonian) implies that anhanguerians might have survived later in Australia than elsewhere.
-
ItemThe pes of Australovenator wintonensis (Theropoda: Megaraptoridae): analysis of the pedal range of motion and biological restoration.White, MA ; Cook, AG ; Klinkhamer, AJ ; Elliott, DA (PeerJ, 2016)The pedal range of motion in Australovenator wintonensis is investigated to determine what influence soft tissue had on range of motion in the foot. Fortunately, the theropod pes shares a close morphology with extant large cursorial birds. Therefore, to better understand the pedal range of motion of Australovenator, the pedal range of motion of Dromaius novaehollandiae (commonly known as the emu) was analysed with and without soft tissue. We used a variety of innovative digital techniques to analyse the range of motion and biologically restore the Australovenator pes. Computed tomography scans of Dromaius pes in fully flexed and fully extended positions provided the soft tissue range of motion limits. The bone on bone range of motion of the same specimen was replicated following the removal of soft tissue. It was identified that there was an increase in range of motion potential with the removal of soft tissue. This variation provided a guide to develop the potential range of motion of a fully fleshed Australovenator pes. Additionally, the dissection of the Dromaius pes provided a guide enabling the replication of the corresponding soft tissue and keratin sheaths of the Australovenator pes.
-
ItemForearm Range of Motion in Australovenator wintonensis (Theropoda, Megaraptoridae).White, MA ; Bell, PR ; Cook, AG ; Barnes, DG ; Tischler, TR ; Bassam, BJ ; Elliott, DA ; Carrier, D (Public Library of Science (PLoS), 2015)The hypertrophied manual claws and modified manus of megaraptoran theropods represent an unusual morphological adaptation among carnivorous dinosaurs. The skeleton of Australovenator wintonensis from the Cenomanian of Australia is among the most complete of any megaraptorid. It presents the opportunity to examine the range of motion of its forearm and the function of its highly modified manus. This provides the basis for behavioural inferences, and comparison with other Gondwanan theropod groups. Digital models created from computed tomography scans of the holotype reveal a humerus range of motion that is much greater than Allosaurus, Acrocanthosaurus, Tyrannosaurus but similar to that of the dromaeosaurid Bambiraptor. During flexion, the radius was forced distally by the radial condyle of the humerus. This movement is here suggested as a mechanism that forced a medial movement of the wrist. The antebrachium possessed a range of motion that was close to dromaeosaurids; however, the unguals were capable of hyper-extension, in particular manual phalanx I-2, which is a primitive range of motion characteristic seen in allosaurids and Dilophosaurus. During flexion, digits I and II slightly converge and diverge when extended which is accentuated by hyperextension of the digits in particular the unguals. We envision that prey was dispatched by its hands and feet with manual phalanx I-2 playing a dominant role. The range of motion analysis neither confirms nor refutes current phylogenetic hypotheses with regards to the placement of Megaraptoridae; however, we note Australovenator possessed, not only a similar forearm range of motion to some maniraptorans and basal coelurosaurs, but also similarities with Tetanurans (Allosauroids and Dilophosaurus).
-
ItemCaralluma fimbriata extract activity involves the 5-HT2c receptor in PWS Snord116 deletion mouse modelGriggs, JL ; Mathai, ML ; Sinnayah, P (WILEY, 2018-12-01)INTRODUCTION: In Prader-Willi syndrome (PWS), nonprotein coding small nucleolar (sno) RNAs are involved in the paternally deleted region of chromosome 15q11.2-q13, which is believed to cause the hyperphagic phenotype of PWS. Central to this is SnoRNA116. The supplement Caralluma fimbriata extract (CFE) has been shown to decrease appetite behavior in some individuals with PWS. We therefore investigated the mechanism underpinning the effect of CFE on food intake in the Snord116del mouse. Experiments utilized appetite stimulants which included a 5-hydroxytryptamine (5-HT) 2c receptor antagonist (SB242084), as the 5-HT2cR is implicated in central signaling of satiety. METHODS: After 9-week chronic CFE treatment (33 mg or 100 mg kg-1 day-1 ) or placebo, the 14-week-old Snord116del (SNO) and wild-type mice (n = 72) were rotated through intraperitoneal injections of (a) isotonic saline; (b) 400 mg/kg of 2-deoxyglucose (2DG) (glucose deprivation); (c) 100 mglkg beta-mercaptoacetate (MA), fatty acid signaling; and (d) SB242084 (a selective 5HT2cR antagonist), with 5 days between reagents. Assessments of food intake were from baseline to 4 hr, followed by immunohistochemistry of neural activity utilizing c-Fos, neuropeptide Y, and alpha-melanocyte-stimulating hormone within hypothalamic appetite pathways. RESULTS: Caralluma fimbriata extract administration decreased food intake more strongly in the SNO100CFE group with significantly stimulated food intake demonstrated during coadministration with SB242084. Though stimulatory deprivation was expected to stimulate food intake, 2DG and MA resulted in lower intake in the snord116del mice compared to the WT animals (p = <0.001). Immunohistochemical mapping of hypothalamic neural activity was consistent with the behavioral studies. CONCLUSIONS: This study identifies a role for the 5-HT2cR in CFE-induced appetite suppression and significant stimulatory feeding disruptions in the snord116del mouse model.