Paediatrics (RCH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 21
  • Item
    Thumbnail Image
    No long-term evidence of hyporesponsiveness after use of pneumococcal conjugate vaccine in children previously immunized with pneumococcal polysaccharide vaccine
    Licciardi, PV ; Toh, ZQ ; Clutterbuck, EA ; Balloch, A ; Marimla, RA ; Tikkanen, L ; Lamb, KE ; Bright, KJ ; Rabuatoka, U ; Tikoduadua, L ; Boelsen, LK ; Dunne, EM ; Satzke, C ; Cheung, YB ; Pollard, AJ ; Russell, FM ; Mulholland, EK (Elsevier, 2016-06)
    Background: A randomized controlled trial in Fiji examined the immunogenicity and effect on nasopharyngeal carriage after 0, 1, 2, or 3 doses of 7-valent pneumococcal conjugate vaccine (PCV7; Prevnar) in infancy followed by 23-valent pneumococcal polysaccharide vaccine (23vPPV; Pneumovax) at 12 months of age. At 18 months of age, children given 23vPPV exhibited immune hyporesponsiveness to a micro-23vPPV (20%) challenge dose in terms of serotype-specific IgG and opsonophagocytosis, while 23vPPV had no effect on vaccine-type carriage. Objective: This follow-up study examined the long-term effect of the 12-month 23vPPV dose by evaluating the immune response to 13-valent pneumococcal conjugate vaccine (PCV13) administration 4 to 5 years later. Methods: Blood samples from 194 children (now 5-7 years old) were taken before and 28 days after PCV13 booster immunization. Nasopharyngeal swabs were taken before PCV13 immunization. We measured levels of serotype-specific IgG to all 13 vaccine serotypes, opsonophagocytosis for 8 vaccine serotypes, and memory B-cell responses for 18 serotypes before and after PCV13 immunization. Results: Paired samples were obtained from 185 children. There were no significant differences in the serotype-specific IgG, opsonophagocytosis, or memory B-cell response at either time point between children who did or did not receive 23vPPV at 12 months of age. Nasopharyngeal carriage of PCV7 and 23vPPV serotypes was similar among the groups. Priming with 1, 2, or 3 PCV7 doses during infancy did not affect serotype-specific immunity or carriage. Conclusion: Immune hyporesponsiveness induced by 23vPPV in toddlers does not appear to be sustained among preschool children in this context and does not affect the pneumococcal carriage rate in this age group.
  • Item
    Thumbnail Image
    Inhibition of Streptococcus pneumoniae adherence to human epithelial cells in vitro by the probiotic Lactobacillus rhamnosus GG.
    Wong, S-S ; Quan Toh, Z ; Dunne, EM ; Mulholland, EK ; Tang, MLK ; Robins-Browne, RM ; Licciardi, PV ; Satzke, C (Springer Science and Business Media LLC, 2013-04-05)
    BACKGROUND: Colonization of the nasopharynx by Streptococcus pneumoniae is considered a prerequisite for pneumococcal infections such as pneumonia and otitis media. Probiotic bacteria can influence disease outcomes through various mechanisms, including inhibition of pathogen colonization. Here, we examine the effect of the probiotic Lactobacillus rhamnosus GG (LGG) on S. pneumoniae colonization of human epithelial cells using an in vitro model. We investigated the effects of LGG administered before, at the same time as, or after the addition of S. pneumoniae on the adherence of four pneumococcal isolates. RESULTS: LGG significantly inhibited the adherence of all the pneumococcal isolates tested. The magnitude of inhibition varied with LGG dose, time of administration, and the pneumococcal isolate used. Inhibition was most effective when a higher dose of LGG was administered prior to establishment of pneumococcal colonization. Mechanistic studies showed that LGG binds to epithelial cells but does not affect pneumococcal growth or viability. Administration of LGG did not lead to any significant changes in host cytokine responses. CONCLUSIONS: These findings demonstrate that LGG can inhibit pneumococcal colonization of human epithelial cells in vitro and suggest that probiotics could be used clinically to prevent the establishment of pneumococcal carriage.
  • Item
    Thumbnail Image
    Protecting against Pneumococcal Disease: Critical Interactions between Probiotics and the Airway Microbiome
    Licciardi, PV ; Toh, ZQ ; Dunne, E ; Wong, S-S ; Mulholland, EK ; Tang, M ; Robins-Browne, RM ; Satzke, C ; Rall, GF (PUBLIC LIBRARY SCIENCE, 2012-06)
  • Item
    Thumbnail Image
    The PneuCarriage Project: A Multi-Centre Comparative Study to Identify the Best Serotyping Methods for Examining Pneumococcal Carriage in Vaccine Evaluation Studies
    Satzke, C ; Dunne, EM ; Porter, BD ; Klugman, KP ; Mulholland, EK ; Bell, D (PUBLIC LIBRARY SCIENCE, 2015-11)
    BACKGROUND: The pneumococcus is a diverse pathogen whose primary niche is the nasopharynx. Over 90 different serotypes exist, and nasopharyngeal carriage of multiple serotypes is common. Understanding pneumococcal carriage is essential for evaluating the impact of pneumococcal vaccines. Traditional serotyping methods are cumbersome and insufficient for detecting multiple serotype carriage, and there are few data comparing the new methods that have been developed over the past decade. We established the PneuCarriage project, a large, international multi-centre study dedicated to the identification of the best pneumococcal serotyping methods for carriage studies. METHODS AND FINDINGS: Reference sample sets were distributed to 15 research groups for blinded testing. Twenty pneumococcal serotyping methods were used to test 81 laboratory-prepared (spiked) samples. The five top-performing methods were used to test 260 nasopharyngeal (field) samples collected from children in six high-burden countries. Sensitivity and positive predictive value (PPV) were determined for the test methods and the reference method (traditional serotyping of >100 colonies from each sample). For the alternate serotyping methods, the overall sensitivity ranged from 1% to 99% (reference method 98%), and PPV from 8% to 100% (reference method 100%), when testing the spiked samples. Fifteen methods had ≥70% sensitivity to detect the dominant (major) serotype, whilst only eight methods had ≥70% sensitivity to detect minor serotypes. For the field samples, the overall sensitivity ranged from 74.2% to 95.8% (reference method 93.8%), and PPV from 82.2% to 96.4% (reference method 99.6%). The microarray had the highest sensitivity (95.8%) and high PPV (93.7%). The major limitation of this study is that not all of the available alternative serotyping methods were included. CONCLUSIONS: Most methods were able to detect the dominant serotype in a sample, but many performed poorly in detecting the minor serotype populations. Microarray with a culture amplification step was the top-performing method. Results from this comprehensive evaluation will inform future vaccine evaluation and impact studies, particularly in low-income settings, where pneumococcal disease burden remains high.
  • Item
    Thumbnail Image
    Reduced IL-17A Secretion Is Associated with High Levels of Pneumococcal Nasopharyngeal Carriage in Fijian Children
    Hoe, E ; Boelsen, LK ; Toh, ZQ ; Sun, GW ; Koo, GC ; Balloch, A ; Marimla, R ; Dunne, EM ; Tikoduadua, L ; Russell, FM ; Satzke, C ; Mulholland, EK ; Licciardi, PV ; Miyaji, EN (PUBLIC LIBRARY SCIENCE, 2015-06-12)
    Streptococcus pneumonia (the pneumococcus) is the leading vaccine preventable cause of serious infections in infants under 5 years of age. The major correlate of protection for pneumococcal infections is serotype-specific IgG antibody. More recently, antibody-independent mechanisms of protection have also been identified. Preclinical studies have found that IL-17 secreting CD4+ Th17 cells in reducing pneumococcal colonisation. This study assessed IL-17A levels in children from Fiji with high and low pneumococcal carriage density, as measured by quantitative real-time PCR (qPCR). We studied Th17 responses in 54 children who were designated as high density carriers (N=27, >8.21x10(5) CFU/ml) or low density carriers (N=27, <1.67x10(5) CFU/ml). Blood samples were collected, and isolated peripheral blood mononuclear cells (PBMCs) were stimulated for 6 days. Supernatants were harvested for cytokine analysis by multiplex bead array and/or ELISA. Th17 cytokines assayed included IL-17A, IL-21, IL-22 as well as TNF-α, IL-10, TGF-β, IL-6, IL-23 and IFNγ. Cytokine levels were significantly lower in children with high density pneumococcal carriage compared with children with low density carriage for IL-17A (p=0.002) and IL-23 (p=0.04). There was a trend towards significance for IL-22 (p=0.057) while no difference was observed for the other cytokines. These data provide further support for the role of Th17-mediated protection in humans and suggest that these cytokines may be important in the defence against pneumococcal carriage.
  • Item
    Thumbnail Image
    Investigation of Streptococcus salivarius-mediated inhibition of pneumococcal adherence to pharyngeal epithelial cells
    Manning, J ; Dunne, EM ; Wescombe, PA ; Hale, JDF ; Mulholland, EK ; Tagg, JR ; Robins-Browne, RM ; Satzke, C (BIOMED CENTRAL LTD, 2016-09-29)
    BACKGROUND: Pneumococcal adherence to the nasopharyngeal epithelium is a critical step in colonisation and disease. The probiotic bacterium, Streptococcus salivarius, can inhibit pneumococcal adherence to epithelial cells in vitro. We investigated the mechanism(s) of inhibition using a human pharyngeal epithelial cell line (Detroit 562) following pre-administration of two different strains of S. salivarius. RESULTS: Whilst the bacteriocin-encoding megaplasmids of S. salivarius strains K12 and M18 were essential to prevent pneumococcal growth on solid media, they were not required to inhibit pneumococcal adherence. Experiments testing S. salivarius K12 and two pneumococcal isolates (serotypes 19F and 6A) showed that inhibition of 19F may involve S. salivarius-mediated blocking of pneumococcal binding sites: a negative correlation was observed between adherence of K12 and 19F, and no inhibition occurred when K12 was prevented from contacting epithelial cells. K12-mediated inhibition of adherence by 6A may involve additional mechanisms, since no correlation was observed between adherence of K12 and 6A, and K12 could inhibit 6A adherence in the absence of cell contact. CONCLUSIONS: These results suggest that S. salivarius employs several mechanisms, including blocking pneumococcal binding sites, to reduce pneumococcal adherence to pharyngeal epithelial cells. These findings extend our understanding of how probiotics may inhibit pneumococcal adherence and could assist with the development of novel strategies to prevent pneumococcal colonisation in the future.
  • Item
    Thumbnail Image
    Single-Plex Quantitative Assays for the Detection and Quantification of Most Pneumococcal Serotypes
    Sakal, F ; Chochua, S ; Satzke, C ; Dunne, EM ; Mulholland, K ; Klugman, KP ; Vidal, JE ; Fratamico, P (PUBLIC LIBRARY SCIENCE, 2015-03-23)
    Streptococcus pneumoniae globally kills more children than any other infectious disease every year. A prerequisite for pneumococcal disease and transmission is colonization of the nasopharynx. While the introduction of pneumococcal conjugate vaccines has reduced the burden of pneumococcal disease, understanding the impact of vaccination on nasopharyngeal colonization has been hampered by the lack of sensitive quantitative methods for the detection of >90 known S. pneumoniae serotypes. In this work, we developed 27 new quantitative (q)PCR reactions and optimized 26 for a total of 53 qPCR reactions targeting pneumococcal serotypes or serogroups, including all vaccine types. Reactions proved to be target-specific with a limit of detection of 2 genome equivalents per reaction. Given the number of probes required for these assays and their unknown shelf-life, the stability of cryopreserved reagents was evaluated. Our studies demonstrate that two-year cryopreserved probes had similar limit of detection as freshly-diluted probes. Moreover, efficiency and limit of detection of 1-month cryopreserved, ready-to-use, qPCR reaction mixtures were similar to those of freshly prepared mixtures. Using these reactions, our proof-of-concept studies utilizing nasopharyngeal samples (N=30) collected from young children detected samples containing ≥2 serotypes/serogroups. Samples colonized by multiple serotypes/serogroups always had a serotype that contributes at least 50% of the pneumococcal load. In addition, a molecular approach called S6-q(PCR)2 was developed and proven to individually detect and quantify epidemiologically-important serogroup 6 strains including 6A, 6B, 6C and 6D. This technology will be useful for epidemiological studies, diagnostic platforms and to study the pneumobiome.
  • Item
    Thumbnail Image
    Real-time qPCR improves meningitis pathogen detection in invasive bacterial-vaccine preventable disease surveillance in Fiji
    Dunne, EM ; Mantanitobua, S ; Singh, SP ; Reyburn, R ; Tuivaga, E ; Rafai, E ; Tikoduadua, L ; Porter, B ; Satzke, C ; Strachan, JE ; Fox, KK ; Jenkins, KM ; Jenney, A ; Baro, S ; Mulholland, EK ; Kama, M ; Russell, FM (NATURE PORTFOLIO, 2016-12-23)
    As part of the World Health Organization Invasive Bacterial-Vaccine Preventable Diseases (IB-VPD) surveillance in Suva, Fiji, cerebrospinal fluid (CSF) samples from suspected meningitis patients of all ages were examined by traditional methods (culture, Gram stain, and latex agglutination for bacterial antigen) and qPCR for Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. Of 266 samples tested, pathogens were identified in 47 (17.7%). S. pneumoniae was the most common pathogen detected (n = 17) followed by N. meningitidis (n = 13). The use of qPCR significantly increased detection of IB-VPD pathogens (P = 0.0001): of 35 samples that were qPCR positive for S. pneumoniae, N. meningitidis, and H. influenzae, only 10 were culture positive. This was particularly relevant for N. meningitidis, as only 1/13 cases was culture positive. Molecular serotyping by microarray was used to determine pneumococcal serotypes from 9 of 16 (56%) of samples using DNA directly extracted from CSF specimens. Results indicate that qPCR significantly increases detection of S. pneumoniae, N. meningitidis, and H. influenzae in CSF, and that application of molecular diagnostics is a feasible way to enhance local and global surveillance for IB-VPD.
  • Item
    Thumbnail Image
    Characterization of 19A-like 19F pneumococcal isolates from Papua New Guinea and Fiji.
    Dunne, EM ; Tikkanen, L ; Balloch, A ; Gould, K ; Yoannes, M ; Phuanukoonnon, S ; Licciardi, PV ; Russell, FM ; Mulholland, EK ; Satzke, C ; Hinds, J (Elsevier BV, 2015-09)
    Molecular identification of Streptococcus pneumoniae serotype 19F is routinely performed by PCR targeting the wzy gene of the capsular biosynthetic locus. However, 19F isolates with genetic similarity to 19A have been reported in the United States and Brazil. We screened 78 pneumococcal carriage isolates and found six 19F wzy variants that originated from children in Papua New Guinea and Fiji. Isolates were characterized using multilocus sequence typing and opsonophagocytic assays. The 19F wzy variants displayed similar susceptibility to anti-19F IgG antibodies compared to standard 19F isolates. Our findings indicate that these 19F variants may be more common than previously believed.
  • Item
    Thumbnail Image
    Carriage of Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in Indonesian children: A cross-sectional study
    Dunne, EM ; Murad, C ; Sudigdoadi, S ; Fadlyana, E ; Tarigan, R ; Indriyani, SAK ; Pell, CL ; Watts, E ; Satzke, C ; Hinds, J ; Dewi, NE ; Yani, FF ; Rusmil, K ; Mulholland, EK ; Kartasasmita, C ; Hozbor, DF (PUBLIC LIBRARY SCIENCE, 2018-04-12)
    Streptococcus pneumoniae is an important cause of infection and commonly colonizes the nasopharynx of young children, along with other potentially pathogenic bacteria. The objectives of this study were to estimate the carriage prevalence of S. pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus in young children in Indonesia, and to examine interactions between these bacterial species. 302 healthy children aged 12-24 months were enrolled in community health centers in the Bandung, Central Lombok, and Padang regions. Nasopharyngeal swabs were collected and stored according to World Health Organization recommendations, and bacterial species detected by qPCR. Pneumococcal serotyping was conducted by microarray and latex agglutination/Quellung. Overall carriage prevalence was 49.5% for S. pneumoniae, 27.5% for H. influenzae, 42.7% for M. catarrhalis, and 7.3% for S. aureus. Prevalence of M. catarrhalis and S. pneumoniae, as well as pneumococcal serotype distribution, varied by region. Positive associations were observed for S. pneumoniae and M. catarrhalis (OR 3.07 [95%CI 1.91-4.94]), and H. influenzae and M. catarrhalis (OR 2.34 [95%CI 1.40-3.91]), and a negative association was found between M. catarrhalis and S. aureus (OR 0.06 [95%CI 0.01-0.43]). Densities of S. pneumoniae, H. influenzae, and M. catarrhalis were positively correlated when two of these species were present. Prior to pneumococcal vaccine introduction, pneumococcal carriage prevalence and serotype distribution varies among children living in different regions of Indonesia. Positive associations in both carriage and density identified among S. pneumoniae, H. influenzae, and M. catarrhalis suggest a synergistic relationship among these species with potential clinical implications.