Paediatrics (RCH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    Thumbnail Image
    Vitamin D insufficiency in the first 6 months of infancy and challenge-proven IgE-mediated food allergy at 1 year of age: a case-cohort study
    Molloy, J ; Koplin, JJ ; Allen, KJ ; Tang, MLK ; Collier, F ; Carlin, JB ; Saffery, R ; Burgner, D ; Ranganathan, S ; Dwyer, T ; Ward, AC ; Moreno-Betancur, M ; Clarke, M ; Ponsonby, AL ; Vuillermin, P (WILEY, 2017-08)
    BACKGROUND: Ecological evidence suggests vitamin D insufficiency (VDI) due to lower ambient ultraviolet radiation (UVR) exposure may be a risk factor for IgE-mediated food allergy. However, there are no studies relating directly measured VDI during early infancy to subsequent challenge-proven food allergy. OBJECTIVE: To prospectively investigate the association between VDI during infancy and challenge-proven food allergy at 1 year. METHODS: In a birth cohort (n = 1074), we used a case-cohort design to compare 25-hydroxyvitamin D3 (25(OH)D3 ) levels among infants with food allergy vs a random subcohort (n = 274). The primary exposures were VDI (25(OH)D3 <50 nM) at birth and 6 months of age. Ambient UVR and time in the sun were combined to estimate UVR exposure dose. IgE-mediated food allergy status at 1 year was determined by formal challenge. Binomial regression was used to examine associations between VDI, UVR exposure dose and food allergy and investigate potential confounding. RESULTS: Within the random subcohort, VDI was present in 45% (105/233) of newborns and 24% (55/227) of infants at 6 months. Food allergy prevalence at 1 year was 7.7% (61/786), and 6.5% (53/808) were egg-allergic. There was no evidence of an association between VDI at either birth (aRR 1.25, 95% CI 0.70-2.22) or 6 months (aRR 0.93, 95% CI 0.41-2.14) and food allergy at 1 year. CONCLUSIONS: There was no evidence that VDI during the first 6 months of infancy is a risk factor for food allergy at 1 year of age. These findings primarily relate to egg allergy, and larger studies are required.
  • Item
    Thumbnail Image
    The association between higher maternal pre-pregnancy body mass index and increased birth weight, adiposity and inflammation in the newborn
    McCloskey, K ; Ponsonby, A-L ; Collier, F ; Allen, K ; Tang, MLK ; Carlin, JB ; Saffery, R ; Skilton, MR ; Cheung, M ; Ranganathan, S ; Dwyer, T ; Burgner, D ; Vuillermin, P (WILEY, 2018-01)
    BACKGROUND: Excess adiposity and adiposity-related inflammation are known risk factors for cardiovascular disease in adults; however, little is known regarding the determinants of adiposity-related inflammation at birth. OBJECTIVES: The aim of this study was to investigate the association between maternal pre-pregnancy BMI and newborn adiposity and inflammation. METHODS: Paired maternal (28-week gestation) and infant (umbilical cord) blood samples were collected from a population-derived birth cohort (Barwon Infant Study, n = 1074). Data on maternal comorbidities and infant birth anthropomorphic measures were compiled, and infant aortic intima-media thickness was measured by trans-abdominal ultrasound. In a selected subgroup of term infants (n = 161), matched maternal and cord lipids, high-sensitivity C-reactive protein (hsCRP) and maternal soluble CD14 were measured. Analysis was completed by using pairwise correlation and linear regression. Because of their non-normal distribution, pathology blood measures were log transformed prior to analysis. RESULTS: Maternal pre-pregnancy BMI was positively associated with increased birth weight (mean difference 17.8 g per kg m-2 , 95% CI 6.6 to 28.9; p = 0.002), newborn mean skin-fold thickness (mean difference 0.1 mm per kg m-2 , 95% CI 0.0 to 0.1; p < 0.001) and cord blood hsCRP (mean difference of 4.2% increase in hsCRP per kg m-2 increase in pre-pregnancy BMI, 95% CI 0.6 to 7.7%, p = 0.02), but not cord blood soluble CD14. Inclusion of maternal hsCRP as a covariate attenuated the associations between pre-pregnancy BMI and both newborn skin-fold thickness and cord blood hsCRP. CONCLUSION: Higher maternal pre-pregnancy BMI is associated with increased newborn adiposity and inflammation. These associations may be partially mediated by maternal inflammation during pregnancy.
  • Item
    Thumbnail Image
    Naive regulatory T cells in infancy: Associations with perinatal factors and development of food allergy
    Collier, F ; Ponsonby, A-L ; O'Hely, M ; Tang, MLK ; Saffery, R ; Molloy, J ; Gray, LE ; Ranganathan, S ; Burgner, D ; Allen, KJ ; Brix, S ; Vuillermin, PJ (WILEY, 2019-09)
    BACKGROUND: In previous studies, deficits in regulatory T-cell (Treg) number and function at birth have been linked with subsequent allergic disease. However, longitudinal studies that account for relevant perinatal factors are required. The aim of this study was to investigate the relationship between perinatal factors, naïve Treg (nTreg) over the first postnatal year and development of food allergy. METHODS: In a birth cohort (n = 1074), the proportion of nTreg in the CD4+ T-cell compartment was measured by flow cytometry at birth (n = 463), 6 (n = 600) and 12 (n = 675) months. IgE-mediated food allergy was determined by food challenge at 1 year. Associations between perinatal factors (gestation, labour, sex, birth size), nTreg at each time point and food allergy at 1 year were examined by linear regression. RESULTS: A higher proportion of nTreg at birth, larger birth size and male sex was each associated with higher nTreg in infancy. Exposure to labour, as compared to delivery by prelabour Caesarean section, was associated with a transient decrease nTreg. Infants that developed food allergy had decreased nTreg at birth, and the labour-associated decrease in nTreg at birth was more evident among infants with subsequent food allergy. Mode of birth was not associated with risk of food allergy, and there was no evidence that nTreg at either 6 or 12 months were related to food allergy. CONCLUSION: The proportion of nTreg at birth is a major determinant of the proportion present throughout infancy, highlighting the importance of prenatal immune development. Exposure to the inflammatory stimulus of labour appears to reveal differences in immune function among infants at risk of food allergy.
  • Item
    Thumbnail Image
    The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood
    Mansell, T ; Novakovic, B ; Meyer, B ; Rzehak, P ; Vuillermin, P ; Ponsonby, A-L ; Collier, F ; Burgner, D ; Saffery, R ; Ryan, J (NATURE PUBLISHING GROUP, 2016-03-29)
    Compelling evidence suggests that maternal mental health in pregnancy can influence fetal development. The imprinted genes, insulin-like growth factor 2 (IGF2) and H19, are involved in fetal growth and each is regulated by DNA methylation. This study aimed to determine the association between maternal mental well-being during pregnancy and differentially methylated regions (DMRs) of IGF2 (DMR0) and the IGF2/H19 imprinting control region (ICR) in newborn offspring. Maternal depression, anxiety and perceived stress were assessed at 28 weeks of pregnancy in the Barwon Infant Study (n=576). DNA methylation was measured in purified cord blood mononuclear cells using the Sequenom MassArray Platform. Maternal anxiety was associated with a decrease in average ICR methylation (Δ=-2.23%; 95% CI=-3.68 to -0.77%), and across all six of the individual CpG units in anxious compared with non-anxious groups. Birth weight and sex modified the association between prenatal anxiety and infant methylation. When stratified into lower (⩽3530 g) and higher (>3530 g) birth weight groups using the median birth weight, there was a stronger association between anxiety and ICR methylation in the lower birth weight group (Δ=-3.89%; 95% CI=-6.06 to -1.72%), with no association in the higher birth weight group. When stratified by infant sex, there was a stronger association in female infants (Δ=-3.70%; 95% CI=-5.90 to -1.51%) and no association in males. All the linear regression models were adjusted for maternal age, smoking and folate intake. These findings show that maternal anxiety in pregnancy is associated with decreased IGF2/H19 ICR DNA methylation in progeny at birth, particularly in female, low birth weight neonates. ICR methylation may help link poor maternal mental health and adverse birth outcomes, but further investigation is needed.
  • Item
    Thumbnail Image
    Early-life determinants of hypoxia-inducible factor 3A gene(HIF3A) methylation: a birth cohort study
    Mansell, T ; Ponsonby, A-L ; Januar, V ; Novakovic, B ; Collier, F ; Burgner, D ; Vuillermin, P ; Ryan, J ; Saffery, R ; Carlin, J ; Allen, K ; Tang, M ; Ranganathan, S ; Dwyer, T ; Jachno, K ; Sly, P (BMC, 2019-07-01)
    BACKGROUND: Methylation of the hypoxia-inducible factor 3α gene (HIF3A) has been linked to pregnancy exposures, infant adiposity and later BMI. Genetic variation influences HIF3A methylation levels and may modify these relationships. However, data in very early life are limited, particularly in association with adverse pregnancy outcomes. We investigated the relationship between maternal and gestational factors, infant anthropometry, genetic variation and HIF3A DNA methylation in the Barwon Infant Study, a population-based birth cohort. Methylation of two previously studied regions of HIF3A were tested in the cord blood mononuclear cells of 938 infants. RESULTS: No compelling evidence was found of an association between birth weight, adiposity or maternal gestational diabetes with methylation at the most widely studied HIF3A region. Male sex (- 4.3%, p < 0.001) and pre-eclampsia (- 5.4%, p = 0.02) negatively associated with methylation at a second region of HIF3A; while positive associations were identified for gestational diabetes (4.8%, p = 0.01) and gestational age (1.2% increase per week, p < 0.001). HIF3A genetic variation also associated strongly with methylation at this region (p < 0.001). CONCLUSIONS: Pre- and perinatal factors impact HIF3A methylation, including pre-eclampsia. This provides evidence that specific pregnancy complications, previously linked to adverse outcomes for both mother and child, impact the infant epigenome in a molecular pathway critical to several vascular and metabolic conditions. Further work is required to understand the mechanisms and clinical relevance, particularly the differing effects of in utero exposure to gestational diabetes or pre-eclampsia.
  • Item
    Thumbnail Image
    Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia
    Hu, M ; Eviston, D ; Hsu, P ; Marino, E ; Chidgey, A ; Santner-Nanan, B ; Wong, K ; Richards, JL ; Yap, YA ; Collier, F ; Quinton, A ; Joung, S ; Peek, M ; Benzie, R ; Macia, L ; Wilson, D ; Ponsonby, A-L ; Tang, MLK ; O'Hely, M ; Daly, NL ; Mackay, CR ; Dahlstrom, JE ; Vuillermin, P ; Nanan, R ; Saffery, R ; Allen, KJ ; Ranganathan, S ; Burgner, D ; Harrison, LC ; Sly, P ; Dwyer, T (NATURE PORTFOLIO, 2019-07-10)
    Maternal immune dysregulation seems to affect fetal or postnatal immune development. Preeclampsia is a pregnancy-associated disorder with an immune basis and is linked to atopic disorders in offspring. Here we show reduction of fetal thymic size, altered thymic architecture and reduced fetal thymic regulatory T (Treg) cell output in preeclamptic pregnancies, which persists up to 4 years of age in human offspring. In germ-free mice, fetal thymic CD4+ T cell and Treg cell development are compromised, but rescued by maternal supplementation with the intestinal bacterial metabolite short chain fatty acid (SCFA) acetate, which induces upregulation of the autoimmune regulator (AIRE), known to contribute to Treg cell generation. In our human cohorts, low maternal serum acetate is associated with subsequent preeclampsia, and correlates with serum acetate in the fetus. These findings suggest a potential role of acetate in the pathogenesis of preeclampsia and immune development in offspring.
  • Item
    Thumbnail Image
    The ontogeny of naive and regulatory CD4+ T-cell subsets during the first postnatal year: a cohort study
    Collier, FM ; Tang, ML ; Martino, D ; Saffery, R ; Carlin, J ; Jachno, K ; Ranganathan, S ; Burgner, D ; Allen, KJ ; Vuillermin, P ; Ponsonby, A-L (NATURE PUBLISHING GROUP, 2015-03)
    As there is limited knowledge regarding the longitudinal development and early ontogeny of naïve and regulatory CD4(+) T-cell subsets during the first postnatal year, we sought to evaluate the changes in proportion of naïve (thymic and central) and regulatory (resting and activated) CD4(+) T-cell populations during the first postnatal year. Blood samples were collected and analyzed at birth, 6 and 12 months of age from a population-derived sample of 130 infants. The proportion of naïve and regulatory CD4(+) T-cell populations was determined by flow cytometry, and the thymic and central naïve populations were sorted and their phenotype confirmed by relative expression of T cell-receptor excision circle DNA (TREC). At birth, the majority (94%) of CD4(+) T cells were naïve (CD45RA(+)), and of these, ~80% had a thymic naïve phenotype (CD31(+) and high TREC), with the remainder already central naïve cells (CD31(-) and low TREC). During the first year of life, the naïve CD4(+) T cells retained an overall thymic phenotype but decreased steadily. From birth to 6 months of age, the proportion of both resting naïve T regulatory cells (rTreg; CD4(+)CD45RA(+)FoxP3(+)) and activated Treg (aTreg, CD4(+)CD45RA(-)FoxP3(high)) increased markedly. The ratio of thymic to central naïve CD4(+) T cells was lower in males throughout the first postnatal year indicating early sexual dimorphism in immune development. This longitudinal study defines proportions of CD4(+) T-cell populations during the first year of postnatal life that provide a better understanding of normal immune development.