Paediatrics (RCH) - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Reducing the exome search space for Mendelian diseases using genetic linkage analysis of exome genotypes
    Smith, KR ; Bromhead, CJ ; Hildebrand, MS ; Shearer, AE ; Lockhart, PJ ; Najmabadi, H ; Leventer, RJ ; McGillivray, G ; Amor, DJ ; Smith, RJ ; Bahlo, M (BIOMED CENTRAL LTD, 2011)
    Many exome sequencing studies of Mendelian disorders fail to optimally exploit family information. Classical genetic linkage analysis is an effective method for eliminating a large fraction of the candidate causal variants discovered, even in small families that lack a unique linkage peak. We demonstrate that accurate genetic linkage mapping can be performed using SNP genotypes extracted from exome data, removing the need for separate array-based genotyping. We provide software to facilitate such analyses.
  • Item
    Thumbnail Image
    A Mutation in Synaptojanin 2 Causes Progressive Hearing Loss in the ENU-Mutagenised Mouse Strain Mozart
    Manji, SSM ; Williams, LH ; Miller, KA ; Ooms, LM ; Bahlo, M ; Mitchell, CA ; Dahl, H-HM ; Krahe, R (PUBLIC LIBRARY SCIENCE, 2011-03-15)
    BACKGROUND: Hearing impairment is the most common sensory impairment in humans, affecting 1:1,000 births. We have identified an ENU generated mouse mutant, Mozart, with recessively inherited, non-syndromic progressive hearing loss caused by a mutation in the synaptojanin 2 (Synj2), a central regulatory enzyme in the phosphoinositide-signaling cascade. METHODOLOGY/PRINCIPAL FINDINGS: The hearing loss in Mozart is caused by a p.Asn538Lys mutation in the catalytic domain of the inositol polyphosphate 5-phosphatase synaptojanin 2. Within the cochlea, Synj2 mRNA expression was detected in the inner and outer hair cells but not in the spiral ganglion. Synj2(N538K) mutant protein showed loss of lipid phosphatase activity, and was unable to degrade phosphoinositide signaling molecules. Mutant Mozart mice (Synj2(N538K/N538K)) exhibited progressive hearing loss and showed signs of hair cell degeneration as early as two weeks of age, with fusion of stereocilia followed by complete loss of hair bundles and ultimately loss of hair cells. No changes in vestibular or neurological function, or other clinical or behavioral manifestations were apparent. CONCLUSIONS/SIGNIFICANCE: Phosphoinositides are membrane associated signaling molecules that regulate many cellular processes including cell death, proliferation, actin polymerization and ion channel activity. These results reveal Synj2 as a critical regulator of hair cell survival that is essential for hair cell maintenance and hearing function.