Anatomy and Neuroscience - Research Publications
Search
Search
Now showing items 1-12 of 621
Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain
(SAGE PUBLICATIONS INC, 2017-03-08)
Sequestration of nerve growth factor has been used successfully in the management of pain in animal models of bone disease and in human osteoarthritis. However, the mechanisms of nerve growth factor-induced bone pain and its role in modulating inflammatory bone pain remain to be determined. In this study, we show that nerve growth factor receptors (TrkA and p75) and some other nerve growth factor-signaling molecules (TRPV1 and Nav1.8, but not Nav1.9) are expressed in substantial proportions of rat bone nociceptors. We demonstrate that nerve growth factor injected directly into rat tibia rapidly activates and sensitizes bone nociceptors and produces acute behavioral responses with a similar time course. The nerve growth factor-induced changes in the activity and sensitivity of bone nociceptors we report are dependent on signaling through the TrkA receptor, but are not affected by mast cell stabilization. We failed to show evidence for longer term changes in expression of TrkA, TRPV1, Nav1.8 or Nav1.9 in the soma of bone nociceptors in a rat model of inflammatory bone pain. Thus, retrograde transport of NGF/TrkA and increased expression of some of the common nerve growth factor signaling molecules do not appear to be important for the maintenance of inflammatory bone pain. The findings are relevant to understand the basis of nerve growth factor sequestration and other therapies directed at nerve growth factor signaling, in managing pain in bone disease.
Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease
(PUBLIC LIBRARY SCIENCE, 2017-03-01)
The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease.
Improved Quantification of Cerebral Vein Oxygenation Using Partial Volume Correction
(FRONTIERS MEDIA SA, 2017-02-27)
Purpose: Quantitative susceptibility mapping (QSM) enables cerebral venous characterization and physiological measurements, such as oxygen extraction fraction (OEF). The exquisite sensitivity of QSM to deoxygenated blood makes it possible to image small veins; however partial volume effects must be addressed for accurate quantification. We present a new method, Iterative Cylindrical Fitting (ICF), to estimate voxel-based partial volume effects for susceptibility maps and use it to improve OEF quantification of small veins with diameters between 1.5 and 4 voxels. Materials and Methods: Simulated QSM maps were generated to assess the performance of the ICF method over a range of vein geometries with varying echo times and noise levels. The ICF method was also applied to in vivo human brain data to assess the feasibility and behavior of OEF measurements compared to the maximum intensity voxel (MIV) method. Results: Improved quantification of OEF measurements was achieved for vessels with contrast to noise greater than 3.0 and vein radii greater than 0.75 voxels. The ICF method produced improved quantitative accuracy of OEF measurement compared to the MIV approach (mean OEF error 7.7 vs. 12.4%). The ICF method provided estimates of vein radius (mean error <27%) and partial volume maps (root mean-squared error <13%). In vivo results demonstrated consistent estimates of OEF along vein segments. Conclusion: OEF quantification in small veins (1.5-4 voxels in diameter) had lower error when using partial volume estimates from the ICF method.
Imaging neuron-glia interactions in the enteric nervous system
(FRONTIERS MEDIA SA, 2013-10-21)
The enteric nervous system (ENS) is a network of neurons and glia within the wall of the gastrointestinal tract that is able to control many aspects of digestive function independently from the central nervous system. Enteric glial cells share several features with astrocytes and are closely associated with enteric neurons and their processes both within enteric ganglia, and along interconnecting fiber bundles. Similar to other parts of the nervous system, there is communication between enteric neurons and glia; enteric glial cells can detect neuronal activity and have the machinery to intermediate neurotransmission. However, due to the close contact between these two cell types and the particular characteristics of the gut wall, the recording of enteric glial cell activity in live imaging experiments, especially in the context of their interaction with neurons, is not straightforward. Most studies have used calcium imaging approaches to examine enteric glial cell activity but in many cases, it is difficult to distinguish whether observed transients arise from glial cells, or neuronal processes or varicosities in their vicinity. In this technical report, we describe a number of approaches to unravel the complex neuron-glia crosstalk in the ENS, focusing on the challenges and possibilities of live microscopic imaging in both animal models and human tissue samples.
RAGE deficiency predisposes mice to virus-induced paucigranulocytic asthma
(ELIFE SCIENCES PUBLICATIONS LTD, 2017-01-18)
Asthma is a chronic inflammatory disease. Although many patients with asthma develop type-2 dominated eosinophilic inflammation, a number of individuals develop paucigranulocytic asthma, which occurs in the absence of eosinophilia or neutrophilia. The aetiology of paucigranulocytic asthma is unknown. However, both respiratory syncytial virus (RSV) infection and mutations in the receptor for advanced glycation endproducts (RAGE) are risk factors for asthma development. Here, we show that RAGE deficiency impairs anti-viral immunity during an early-life infection with pneumonia virus of mice (PVM; a murine analogue of RSV). The elevated viral load was associated with the release of high mobility group box-1 (HMGB1) which triggered airway smooth muscle remodelling in early-life. Re-infection with PVM in later-life induced many of the cardinal features of asthma in the absence of eosinophilic or neutrophilic inflammation. Anti-HMGB1 mitigated both early-life viral disease and asthma-like features, highlighting HMGB1 as a possible novel therapeutic target.
An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator
(NATURE PUBLISHING GROUP, 2014-12-01)
Reprogramming of somatic cells to induced pluripotent stem cells involves a dynamic rearrangement of the epigenetic landscape. To characterize this epigenomic roadmap, we have performed MethylC-seq, ChIP-seq (H3K4/K27/K36me3) and RNA-Seq on samples taken at several time points during murine secondary reprogramming as part of Project Grandiose. We find that DNA methylation gain during reprogramming occurs gradually, while loss is achieved only at the ESC-like state. Binding sites of activated factors exhibit focal demethylation during reprogramming, while ESC-like pluripotent cells are distinguished by extension of demethylation to the wider neighbourhood. We observed that genes with CpG-rich promoters demonstrate stable low methylation and strong engagement of histone marks, whereas genes with CpG-poor promoters are safeguarded by methylation. Such DNA methylation-driven control is the key to the regulation of ESC-pluripotency genes, including Dppa4, Dppa5a and Esrrb. These results reveal the crucial role that DNA methylation plays as an epigenetic switch driving somatic cells to pluripotency.
Cognitive impairment and decline in cognitively normal older adults with high amyloid-β: A meta-analysis.
(Wiley, 2017)
INTRODUCTION: This meta-analysis aimed to characterize the nature and magnitude of amyloid (Aβ)-related cognitive impairment and decline in cognitively normal (CN) older individuals. METHOD: MEDLINE Ovid was searched from 2012 to June 2016 for studies reporting relationships between cerebrospinal fluid or positron emission tomography (PET) Aβ levels and cognitive impairment (cross-sectional) and decline (longitudinal) in CN older adults. Neuropsychological data were classified into domains of episodic memory, executive function, working memory, processing speed, visuospatial function, semantic memory, and global cognition. Type of Aβ measure, how Aβ burden was analyzed, inclusion of control variables, and clinical criteria used to exclude participants, were considered as moderators. Random-effects models were used for analyses with effect sizes expressed as Cohen's d. RESULTS: A total of 38 studies met inclusion criteria contributing 30 cross-sectional (N = 5005) and 14 longitudinal (N = 2584) samples. Aβ-related cognitive impairment was observed for global cognition (d = 0.32), visuospatial function (d = 0.25), processing speed (d = 0.18), episodic memory, and executive function (both d's = 0.15), with decline observed for global cognition (d = 0.30), semantic memory (d = 0.28), visuospatial function (d = 0.25), and episodic memory (d = 0.24). Aβ-related impairment was moderated by age, amyloid measure, type of analysis, and inclusion of control variables and decline moderated by amyloid measure, type of analysis, inclusion of control variables, and exclusion criteria used. DISCUSSION: CN older adults with high Aβ show a small general cognitive impairment and small to moderate decline in episodic memory, visuospatial function, semantic memory, and global cognition.
Optical Tools to Investigate Cellular Activity in the Intestinal Wall
(KOREAN SOC NEUROGASTROENTEROLOGY & MOTILITY, 2015-07-01)
Live imaging has become an essential tool to investigate the coordinated activity and output of cellular networks. Within the last decade, 2 Nobel prizes have been awarded to recognize innovations in the field of imaging: one for the discovery, use, and optimization of the green fluorescent protein (2008) and the second for the development of super-resolved fluorescence microscopy (2014). New advances in both optogenetics and microscopy now enable researchers to record and manipulate ac-tivity from specific populations of cells with better contrast and resolution, at higher speeds, and deeper into live tissues. In this review, we will discuss some of the recent developments in microscope technology and in the synthesis of fluorescent probes, both synthetic and genetically encoded. We focus on how live imaging of cellular physiology has progressed our under-standing of the control of gastrointestinal motility, and we discuss the hurdles to overcome in order to apply the novel tools in the field of neurogastroenterology and motility.
A Cross-Study Transcriptional Analysis of Parkinson's Disease
(PUBLIC LIBRARY SCIENCE, 2009-03-23)
The study of Parkinson's disease (PD), like other complex neurodegenerative disorders, is limited by access to brain tissue from patients with a confirmed diagnosis. Alternatively the study of peripheral tissues may offer some insight into the molecular basis of disease susceptibility and progression, but this approach still relies on brain tissue to benchmark relevant molecular changes against. Several studies have reported whole-genome expression profiling in post-mortem brain but reported concordance between these analyses is lacking. Here we apply a standardised pathway analysis to seven independent case-control studies, and demonstrate increased concordance between data sets. Moreover data convergence increased when the analysis was limited to the five substantia nigra (SN) data sets; this highlighted the down regulation of dopamine receptor signaling and insulin-like growth factor 1 (IGF1) signaling pathways. We also show that case-control comparisons of affected post mortem brain tissue are more likely to reflect terminal cytoarchitectural differences rather than primary pathogenic mechanisms. The implementation of a correction factor for dopaminergic neuronal loss predictably resulted in the loss of significance of the dopamine signaling pathway while axon guidance pathways increased in significance. Interestingly the IGF1 signaling pathway was also over-represented when data from non-SN areas, unaffected or only terminally affected in PD, were considered. Our findings suggest that there is greater concordance in PD whole-genome expression profiling when standardised pathway membership rather than ranked gene list is used for comparison.
The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome
(PUBLIC LIBRARY SCIENCE, 2015-12-01)
X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution.
Long-Distance Axonal Growth and Protracted Functional Maturation of Neurons Derived from Human Induced Pluripotent Stem Cells After Intracerebral Transplantation
(WILEY, 2017-06-01)
The capacity for induced pluripotent stem (iPS) cells to be differentiated into a wide range of neural cell types makes them an attractive donor source for autologous neural transplantation therapies aimed at brain repair. Translation to the in vivo setting has been difficult, however, with mixed results in a wide variety of preclinical models of brain injury and limited information on the basic in vivo properties of neural grafts generated from human iPS cells. Here we have generated a human iPS cell line constitutively expressing green fluorescent protein as a basis to identify and characterize grafts resulting from transplantation of neural progenitors into the adult rat brain. The results show that the grafts contain a mix of neural cell types, at various stages of differentiation, including neurons that establish extensive patterns of axonal growth and progressively develop functional properties over the course of 1 year after implantation. These findings form an important basis for the design and interpretation of preclinical studies using human stem cells for functional circuit re-construction in animal models of brain injury. Stem Cells Translational Medicine 2017;6:1547-1556.
Disordered clusters of Bak dimers rupture mitochondria during apoptosis
(ELIFE SCIENCES PUBLICATIONS LTD, 2017-02-06)
During apoptosis, Bak and Bax undergo major conformational change and form symmetric dimers that coalesce to perforate the mitochondrial outer membrane via an unknown mechanism. We have employed cysteine labelling and linkage analysis to the full length of Bak in mitochondria. This comprehensive survey showed that in each Bak dimer the N-termini are fully solvent-exposed and mobile, the core is highly structured, and the C-termini are flexible but restrained by their contact with the membrane. Dimer-dimer interactions were more labile than the BH3:groove interaction within dimers, suggesting there is no extensive protein interface between dimers. In addition, linkage in the mobile Bak N-terminus (V61C) specifically quantified association between dimers, allowing mathematical simulations of dimer arrangement. Together, our data show that Bak dimers form disordered clusters to generate lipidic pores. These findings provide a molecular explanation for the observed structural heterogeneity of the apoptotic pore.