Veterinary Biosciences - Research Publications
Search
Search
Now showing items 1-12 of 629
Equine Rhinitis Virus Infection
(W B Saunders Company, 2015)
This new volume brings you thorough coverage and authoritative advice on selected topics in areas that have seen significant advances in the last five years.
Update on Viral Diseases of the Equine Respiratory Tract
(Elsevier, 2015)
Many viral agents have been associated with respiratory disease of the horse. The most important viral causes of respiratory disease in horses are equine influenza and the equine alphaherpesviruses. Agents such as equine viral arteritis virus, African horse sickness virus, and Hendra virus establish systemic infections. Clinical signs of disease resulting from infection with these agents can manifest as respiratory disease, but the respiratory tract is not the major body system affected by these viruses. Treatment of viral respiratory disease is generally limited to supportive therapies, whereas targeted antimicrobial therapy is effective in cases of bacterial infection.
Equine Rhinitis Vaccine
(2012-09-20)
The disclosure provides for immunogenic compositions against Equine Rhinitis Virus, particularly Equine Rhinitis A and B Virus, and methods for their use and preparation. The immunogenic compositions, in alternate embodiments, also include other equine pathogens.
Butyrophilin 2A1 is essential for phosphoantigen reactivity by gamma delta T cells
(American Association for the Advancement of Science, 2020-02-07)
Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell-based immunotherapies.
Development and application of a combined molecular and tissue culture-based approach to detect latent infectious laryngotracheitis virus (ILTV) in chickens.
(Elsevier, 2020-03-01)
Infectious laryngotracheitis virus (ILTV) causes severe respiratory disease in chickens. ILTV can establish latency and reactivate later in life, but there have been few investigations of ILTV latency. This study aimed to contribute to the methodologies available to detect latent ILTV. A nested PCR was developed which was more sensitive than three other molecular methods investigated in this study. This nested PCR was then used in conjunction with in vitro reactivation culture methods that were optimized and applied to trigeminal ganglia (TG) and tracheal samples from ILTV-vaccinated commercial layer birds (n = 30). ILTV DNA was detected by nested PCR in the upper respiratory tract (URT) or eye of 22 birds. Of the remaining 8 birds, ILTV could be detected by co-culture in TG of 5 birds, with reactivated virus mostly detected 6 days post-explant (dpe). ILTV was also detected in tracheal cultures by 6 dpe. In the ILTV-positive URT samples, the virus could be characterised as vaccine strains SA2 (n = 9) or A20 (n = 5). This study provides evidence for reactivation and shedding of vaccine ILTV in commercial layer birds. Moreover, this study produced a molecular and in-vitro culture method to detect latent viral infection.
Pathogenesis and tissue tropism of natural field recombinants of infectious laryngotracheitis virus
(ELSEVIER, 2020-04-01)
Infectious laryngotracheitis virus (ILTV) is an economically significant respiratory pathogen of poultry. Novel recombinant strains of ILTV have emerged in Australia during the last decade and currently class 9 (CL9) and class 10 (CL10) ILTV are the most prevalent circulating strains. This study conducted a comprehensive investigation of the pathogenesis of these two viral strains. Commercial broiler and specific pathogen free (SPF) chickens were inoculated with varying doses of CL9 or CL10 ILTV and subsequently evaluated for clinical and pathological signs of infection. While no difference in the levels of acute viral replication were observed across the different challenge doses, the severity of clinical signs, tracheal pathology and mortality were dose dependent. Both strains of virus persisted in the respiratory tract for up to 14 days post inoculation (dpi) and could be detected in the lung and feathers with sporadic detection in the liver, spleen or bursa. Given the prevalence of CL9 and CL10 in Australian poultry flocks, this study provides an important foundation for the development of diagnostic and therapeutic approaches for the detection and prevention of ILTV.
Latency characteristics in specific pathogen-free chickens 21 and 35 days after intra-tracheal inoculation with vaccine or field strains of infectious laryngotracheitis virus
(TAYLOR & FRANCIS LTD, 2020-07-03)
Latency is an important feature of infectious laryngotracheitis virus (ILTV) yet is poorly understood. This study aimed to compare latency characteristics of vaccine (SA2) and field (CL9) strains of ILTV, establish an in vitro reactivation system and examine ILTV infection in peripheral blood mononuclear cells (PBMC) in specific pathogen-free chickens. Birds were inoculated with SA2 or CL9 ILTV and then bled and culled at 21 or 35 days post-inoculation (dpi). Swabs (conjunctiva, palatine cleft, trachea) and trigeminal ganglia (TG) were examined for ILTV DNA using PCR. Half of the TG, trachea and PBMC were co-cultivated with cell monolayers to assess in vitro reactivation of ILTV infection. ILTV DNA was detected in the trachea of approximately 50% of ILTV-inoculated birds at both timepoints. At 21 dpi, ILTV was detected in the TG only in 29% and 17% of CL9- and SA2-infected birds, respectively. At 35 dpi, ILTV was detected in the TG only in 30% and 10% of CL9- and SA2-infected birds, respectively. Tracheal organ co-cultures from 30% and 70% of CL9- and SA2-infected birds, respectively, were negative for ILTV DNA at cull but yielded quantifiable DNA within 6 days post-explant (dpe). TG co-cultivation from 30% and 40% of CL9-and SA2-infected birds, respectively, had detectable ILTV DNA within 6 dpe. Latency characteristics did not substantially vary based on the strain of virus inoculated or between sampling timepoints. These results advance our understanding of ILTV latency and reactivation. RESEARCH HIGHLIGHTS Following inoculation, latent ILTV infection was detected in a large proportion of chickens, irrespective of whether a field or vaccine strain was inoculated. In vitro reactivation of latent ILTV was readily detected in tracheal and trigeminal ganglia co-cultures using PCR. ILTV latency observed in SPF chickens at 21 days post-infection was not substantially different to 35 days post-infection.
Superinfection and recombination of infectious laryngotracheitis virus vaccines in the natural host
(ELSEVIER SCI LTD, 2020-11-03)
Infectious laryngotracheitis virus (ILTV, Gallid alphaherpesvirus 1) causes severe respiratory disease in chickens and has a major impact on the poultry industry worldwide. Live attenuated vaccines are widely available and are administered early in the life of commercial birds, often followed by one or more rounds of revaccination, generating conditions that can favour recombination between vaccines. Better understanding of the factors that contribute to the generation of recombinant ILTVs will inform the safer use of live attenuated herpesvirus vaccines. This study aimed to examine the parameters of infection that allow superinfection and may enable the generation of recombinant progeny in the natural host. In this study, 120 specific-pathogen free (SPF) chickens in 8 groups were inoculated with two genetically distinct live-attenuated ILTV vaccine strains with 1-4 days interval between the first and second vaccinations. After inoculation, viral genomes were detected in tracheal swabs in all groups, with lowest copies detected in swabs collected from the groups where the interval between inoculations was 4 days. Superinfection of the host was defined as the detection of the virus that was inoculated last, and this was detected in tracheal swabs from all groups. Virus could be isolated from swabs at a limited number of timepoints, and these further illustrated superinfection of the birds as recombinant viruses were detected among the progeny. This study has demonstrated superinfection at host level and shows recombination events occur under a very broad range of infection conditions. The occurrence of superinfection after unsynchronised infection with multiple viruses, and subsequent genomic recombination, highlight the importance of using only one type of vaccine per flock as the most effective way to limit recombination.
Haematological and serum biochemical reference intervals of free‐ranging Lumholtz's tree‐kangaroos (Dendrolagus lumholtzi)
(Wiley, 2021)
Background
Reference intervals for haematology and serum biochemistry parameters were developed for free‐ranging Lumholtz's tree‐kangaroo (Dendrolagus lumholtzi) using 35 samples from 12 female and 15 male free‐ranging animals. Captive tree‐kangaroos (n = 12) were also sampled for comparison. Differences were found between free‐ranging and captive animals in white blood cell and neutrophil counts, and levels of aspartate aminotransferase, alkaline phosphatase, bilirubin, creatine kinase, phosphate, triglycerides and lipase. These differences may be attributed to diet, activity, capture methods or age group. Reference intervals generated may be used for both free‐ranging and captive Lumholtz's tree‐kangaroos. This study provides a valuable tool for the assessment of health in rescued and captive tree‐kangaroos and will aid in investigations into population health and disease in free‐ranging Lumholtz's tree‐kangaroos.
Objective
To develop reference intervals (RIs) for haematology and serum biochemistry parameters in Lumholtz's tree‐kangaroos.
Methods
Haematological and serum biochemical RIs were determined using 35 samples from 27 clinically healthy Lumholtz's tree‐kangaroos from the Atherton Tablelands region of Queensland examined between 2014 and 2019. Haematology and serum biochemistry parameters were measured from 16 samples from 12 captive animals for comparison.
Results
Reference intervals based on 35 samples from free‐ranging animals showed higher mean and standard deviation values for white blood cell and neutrophil counts, and levels of aspartate aminotransferase, alkaline phosphatase, bilirubin, creatine kinase, phosphate, triglycerides and lipase than results for 16 samples from captive animals. Captive individuals showed higher mean values than free‐ranging individuals for albumin, protein, creatinine as well as Hb, MCV, MCH and MCHC.
Conclusion
The haematological and serum biochemistry RIs developed for Lumholtz's tree‐kangaroos in this study will provide a valuable tool during clinical examination and investigations into disease and population health by veterinarians and researchers. The differences in parameters between free‐ranging and captive animals are consistent with differences in diet, age cohort, activity or capture methods. Reference intervals generated from free‐ranging animals should also be valid for captive Lumholtz's tree‐kangaroos.
Diversity of Blastocystis subtypes in dogs in different geographical settings
(BMC, 2013-07-24)
BACKGROUND: Blastocystis is a ubiquitous, globally distributed intestinal protist infecting humans and a wide range of animals. Several studies have shown that Blastocystis is a potentially zoonotic parasite. A 1996 study reported a 70% Blastocystis prevalence in Brisbane pound dogs while another study found that pet dogs/cats of 11 symptomatic Blastocystis infected patients harboured at least one Blastocystis subtype (ST) in common with the patient. These results raised the possibility that dogs might be natural hosts of Blastocystis. In this study, we aimed to investigate this hypothesis by estimating the prevalence of Blastocystis carriage and characterising the diversity of STs in dogs from three different environmental settings and comparing these STs with the range that humans harbour. METHODS: Two hundred and forty faecal samples from dogs from three different geographical regions with varying levels of socio-economic development and sanitation, namely i) 80 pet and pound dogs from Brisbane, Australia, ii) 80 semi-domesticated dogs from Dong Village, Cambodia and iii) 80 stray dogs from the densely populated cities of Sikkim, Delhi and Mumbai in India, were screened for Blastocystis using PCR and subtyped based on the "barcode region" of the small subunit ribosomal RNA (SSU rRNA) gene. RESULTS: The prevalence of Blastocystis in dogs from Brisbane and Cambodia was 2.5% (2/80) and 1.3% (1/80), respectively, in contrast to 24% (19/80) in stray dogs from India. Stray dogs in India carried a diverse range of Blastocystis STs including ST 1, 4, 5 and 6 while the dogs from Brisbane carried only ST1 and one Cambodian dog carried ST2. CONCLUSION: The results suggest there is geographical variation in Blastocystis prevalence and STs between dog populations as reported in human studies. In addition, the greater diversity of STs and higher prevalence of Blastocystis in Indian stray dogs compared to pet/pound and community dogs in Australia and Cambodia could reflect close proximity to humans and other animals and exposure to their faeces. It appears that dogs are not natural hosts for Blastocystis but rather are transiently and opportunistically infected with a diversity of STs.
Vector-Borne Diseases - constant challenge for practicing veterinarians: recommendations from the CVBD World Forum
(BIOMED CENTRAL LTD, 2012-03-20)
The human-animal bond has been a fundamental feature of mankind's history for millennia. The first, and strongest of these, man's relationship with the dog, is believed to pre-date even agriculture, going back as far as 30,000 years. It remains at least as powerful today. Fed by the changing nature of the interactions between people and their dogs worldwide and the increasing tendency towards close domesticity, the health of dogs has never played a more important role in family life. Thanks to developments in scientific understanding and diagnostic techniques, as well as changing priorities of pet owners, veterinarians are now able, and indeed expected, to play a fundamental role in the prevention and treatment of canine disease, including canine vector-borne diseases (CVBDs).The CVBDs represent a varied and complex group of diseases, including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, leishmaniosis, rickettsiosis and thelaziosis, with new syndromes being uncovered every year. Many of these diseases can cause serious, even life-threatening clinical conditions in dogs, with a number having zoonotic potential, affecting the human population.Today, CVBDs pose a growing global threat as they continue their spread far from their traditional geographical and temporal restraints as a result of changes in both climatic conditions and pet dog travel patterns, exposing new populations to previously unknown infectious agents and posing unprecedented challenges to veterinarians.In response to this growing threat, the CVBD World Forum, a multidisciplinary group of experts in CVBDs from around the world which meets on an annual basis, gathered in Nice (France) in 2011 to share the latest research on CVBDs and discuss the best approaches to managing these diseases around the world.As a result of these discussions, we, the members of the CVBD Forum have developed the following recommendations to veterinarians for the management of CVBDs.
A survey of canine tick-borne diseases in India
(BMC, 2011-07-19)
BACKGROUND: There are few published reports on canine Babesia, Ehrlichia, Anaplasma, Hepatozoon and haemotropic Mycoplasma infections in India and most describe clinical disease in individual dogs, diagnosed by morphological observation of the microorganisms in stained blood smears. This study investigated the occurrence and distribution of canine tick-borne disease (TBD) pathogens using a combination of conventional and molecular diagnostic techniques in four cities in India. RESULTS: On microscopy examination, only Hepatozoon gamonts were observed in twelve out of 525 (2.3%; 95% CI: 1.2, 4) blood smears. Using polymerase chain reaction (PCR), a total of 261 from 525 dogs (49.7%; 95% CI: 45.4, 54.1) in this study were infected with one or more canine tick-borne pathogen. Hepatozoon canis (30%; 95% CI: 26.0, 34.0) was the most common TBD pathogen found infecting dogs in India followed by Ehrlichia canis (20.6%; 95% CI: 17.2, 24.3), Mycoplasma haemocanis (12.2%; 95% CI: 9.5, 15.3), Anaplasma platys (6.5%; 95% CI: 4.5, 8.9), Babesia vogeli (5.5%, 95% CI: 3.7, 7.8) and Babesia gibsoni (0.2%, 95% CI: 0.01, 1.06). Concurrent infection with more than one TBD pathogen occurred in 39% of cases. Potential tick vectors, Rhipicephalus (most commonly) and/or Haemaphysalis ticks were found on 278 (53%) of dogs examined. CONCLUSIONS: At least 6 species of canine tick-borne pathogens are present in India. Hepatozoon canis was the most common pathogen and ticks belonging to the genus Rhipicephalus were encountered most frequently. Polymerase chain reaction was more sensitive in detecting circulating pathogens compared with peripheral blood smear examination. As co-infections with canine TBD pathogens were common, Indian veterinary practitioners should be cognisant that the discovery of one such pathogen raises the potential for multiple infections which may warrant different clinical management strategies.