Clinical Pathology - Research Publications
Search
Search
Now showing items 1-12 of 620
Identification of BRCA1 missense substitutions that confer partial functional activity: potential moderate risk variants?
(BMC, 2007-01-01)
INTRODUCTION: Many of the DNA sequence variants identified in the breast cancer susceptibility gene BRCA1 remain unclassified in terms of their potential pathogenicity. Both multifactorial likelihood analysis and functional approaches have been proposed as a means to elucidate likely clinical significance of such variants, but analysis of the comparative value of these methods for classifying all sequence variants has been limited. METHODS: We have compared the results from multifactorial likelihood analysis with those from several functional analyses for the four BRCA1 sequence variants A1708E, G1738R, R1699Q, and A1708V. RESULTS: Our results show that multifactorial likelihood analysis, which incorporates sequence conservation, co-inheritance, segregation, and tumour immunohistochemical analysis, may improve classification of variants. For A1708E, previously shown to be functionally compromised, analysis of oestrogen receptor, cytokeratin 5/6, and cytokeratin 14 tumour expression data significantly strengthened the prediction of pathogenicity, giving a posterior probability of pathogenicity of 99%. For G1738R, shown to be functionally defective in this study, immunohistochemistry analysis confirmed previous findings of inconsistent 'BRCA1-like' phenotypes for the two tumours studied, and the posterior probability for this variant was 96%. The posterior probabilities of R1699Q and A1708V were 54% and 69%, respectively, only moderately suggestive of increased risk. Interestingly, results from functional analyses suggest that both of these variants have only partial functional activity. R1699Q was defective in foci formation in response to DNA damage and displayed intermediate transcriptional transactivation activity but showed no evidence for centrosome amplification. In contrast, A1708V displayed an intermediate transcriptional transactivation activity and a normal foci formation response in response to DNA damage but induced centrosome amplification. CONCLUSION: These data highlight the need for a range of functional studies to be performed in order to identify variants with partially compromised function. The results also raise the possibility that A1708V and R1699Q may be associated with a low or moderate risk of cancer. While data pooling strategies may provide more information for multifactorial analysis to improve the interpretation of the clinical significance of these variants, it is likely that the development of current multifactorial likelihood approaches and the consideration of alternative statistical approaches will be needed to determine whether these individually rare variants do confer a low or moderate risk of breast cancer.
Next-Generation Sequence Analysis of Cancer Xenograft Models
(PUBLIC LIBRARY SCIENCE, 2013-09-26)
Next-generation sequencing (NGS) studies in cancer are limited by the amount, quality and purity of tissue samples. In this situation, primary xenografts have proven useful preclinical models. However, the presence of mouse-derived stromal cells represents a technical challenge to their use in NGS studies. We examined this problem in an established primary xenograft model of small cell lung cancer (SCLC), a malignancy often diagnosed from small biopsy or needle aspirate samples. Using an in silico strategy that assign reads according to species-of-origin, we prospectively compared NGS data from primary xenograft models with matched cell lines and with published datasets. We show here that low-coverage whole-genome analysis demonstrated remarkable concordance between published genome data and internal controls, despite the presence of mouse genomic DNA. Exome capture sequencing revealed that this enrichment procedure was highly species-specific, with less than 4% of reads aligning to the mouse genome. Human-specific expression profiling with RNA-Seq replicated array-based gene expression experiments, whereas mouse-specific transcript profiles correlated with published datasets from human cancer stroma. We conclude that primary xenografts represent a useful platform for complex NGS analysis in cancer research for tumours with limited sample resources, or those with prominent stromal cell populations.
Visualizing Chromosome Mosaicism and Detecting Ethnic Outliers by the Method of "Rare" Heterozygotes and Homozygotes (RHH)
(OXFORD UNIV PRESS, 2010-07-01)
We describe a novel approach for evaluating SNP genotypes of a genome-wide association scan to identify "ethnic outlier" subjects whose ethnicity is different or admixed compared to most other subjects in the genotyped sample set. Each ethnic outlier is detected by counting a genomic excess of "rare" heterozygotes and/or homozygotes whose frequencies are low (<1%) within genotypes of the sample set being evaluated. This method also enables simple and striking visualization of non-Caucasian chromosomal DNA segments interspersed within the chromosomes of ethnically admixed individuals. We show that this visualization of the mosaic structure of admixed human chromosomes gives results similar to another visualization method (SABER) but with much less computational time and burden. We also show that other methods for detecting ethnic outliers are enhanced by evaluating only genomic regions of visualized admixture rather than diluting outlier ancestry by evaluating the entire genome considered in aggregate. We have validated our method in the Wellcome Trust Case Control Consortium (WTCCC) study of 17,000 subjects as well as in HapMap subjects and simulated outliers of known ethnicity and admixture. The method's ability to precisely delineate chromosomal segments of non-Caucasian ethnicity has enabled us to demonstrate previously unreported non-Caucasian admixture in two HapMap Caucasian parents and in a number of WTCCC subjects. Its sensitive detection of ethnic outliers and simple visual discrimination of discrete chromosomal segments of different ethnicity implies that this method of rare heterozygotes and homozygotes (RHH) is likely to have diverse and important applications in humans and other species.
Ten-year results of quality assurance in radiotherapy chart round
(BMC, 2013-04-23)
BACKGROUND: The Royal Australian and New Zealand College of Radiologists (RANZCR) initiated a unique instrument to audit the quality of patient notes and radiotherapy prescriptions. We present our experience collected over ten years from the use of the RANZCR audit instrument. METHODS: In this study, the results of data collected prospectively from January 1999 to June 2009 through the audit instrument were assessed. Radiotherapy chart rounds were held weekly in the uro-oncology tumour stream and real time feedback was provided. Electronic medical records were retrospectively assessed in September 2009 to see if any omissions were subsequently corrected. RESULTS: In total 2597 patients were audited. One hundred and thirty seven (5%) patients had one hundred and ninety nine omissions in documentation or radiotherapy prescription. In 79% of chart rounds no omissions were found at all, in 12% of chart rounds one omission was found and in 9% of chart rounds two or more omissions were found. Out of 199 omissions, 95% were of record keeping and 2% were omissions in the treatment prescription. Of omissions, 152 (76%) were unfiled investigation results of which 77 (51%) were subsequently corrected. CONCLUSIONS: Real-time audit with feedback is an effective tool in assessing the standards of radiotherapy documentation in our department, and also probably contributed to the high level of attentiveness. A large proportion of omissions were investigation results, which highlights the need for an improved system of retrieval of investigation results in the radiation oncology department.
The Myb-p300-CREB axis modulates intestine homeostasis, radiosensitivity and tumorigenesis
(NATURE PUBLISHING GROUP, 2013-04-01)
The gastrointestinal (GI) epithelium is constantly renewing, depending upon the intestinal stem cells (ISC) regulated by a spectrum of transcription factors (TFs), including Myb. We noted previously in mice with a p300 mutation (plt6) within the Myb-interaction-domain phenocopied Myb hypomorphic mutant mice with regard to thrombopoiesis, and here, changes in GI homeostasis. p300 is a transcriptional coactivator for many TFs, most prominently cyclic-AMP response element-binding protein (CREB), and also Myb. Studies have highlighted the importance of CREB in proliferation and radiosensitivity, but not in the GI. This prompted us to directly investigate the p300-Myb-CREB axis in the GI. Here, the role of CREB has been defined by generating GI-specific inducible creb knockout (KO) mice. KO mice show efficient and specific deletion of CREB, with no evident compensation by CREM and ATF1. Despite complete KO, only modest effects on proliferation, radiosensitivity and differentiation in the GI under homeostatic or stress conditions were evident, even though CREB target gene pcna (proliferating cell nuclear antigen) was downregulated. creb and p300 mutant lines show increased goblet cells, whereas a reduction in enteroendocrine cells was apparent only in the p300 line, further resembling the Myb hypomorphs. When propagated in vitro, crebKO ISC were defective in organoid formation, suggesting that the GI stroma compensates for CREB loss in vivo, unlike in MybKO studies. Thus, it appears that p300 regulates GI differentiation primarily through Myb, rather than CREB. Finally, active pCREB is elevated in colorectal cancer (CRC) cells and adenomas, and is required for the expression of drug transporter, MRP2, associated with resistance to Oxaliplatin as well as several chromatin cohesion protein that are relevant to CRC therapy. These data raise the prospect that CREB may have a role in GI malignancy as it does in other cancer types, but unlike Myb, is not critical for GI homeostasis.
Sustained Low-Dose Treatment with the Histone Deacetylase Inhibitor LBH589 Induces Terminal Differentiation of Osteosarcoma Cells.
(Hindawi Limited, 2013)
Histone deacetylase inhibitors (HDACi) were identified nearly four decades ago based on their ability to induce cellular differentiation. However, the clinical development of these compounds as cancer therapies has focused on their capacity to induce apoptosis in hematologic and lymphoid malignancies, often in combination with conventional cytotoxic agents. In many cases, HDACi doses necessary to induce these effects result in significant toxicity. Since osteosarcoma cells express markers of terminal osteoblast differentiation in response to DNA methyltransferase inhibitors, we reasoned that the epigenetic reprogramming capacity of HDACi might be exploited for therapeutic benefit. Here, we show that continuous exposure of osteosarcoma cells to low concentrations of HDACi LBH589 (Panobinostat) over a three-week period induces terminal osteoblast differentiation and irreversible senescence without inducing cell death. Remarkably, transcriptional profiling revealed that HDACi therapy initiated gene signatures characteristic of chondrocyte and adipocyte lineages in addition to marked upregulation of mature osteoblast markers. In a mouse xenograft model, continuous low dose treatment with LBH589 induced a sustained cytostatic response accompanied by induction of mature osteoblast gene expression. These data suggest that the remarkable capacity of osteosarcoma cells to differentiate in response to HDACi therapy could be exploited for therapeutic benefit without inducing systemic toxicity.
Genome-scale case-control analysis of CD4+T-cell DNA methylation in juvenile idiopathic arthritis reveals potential targets involved in disease
(BMC, 2012-01-01)
UNLABELLED: BACKGROUND: Juvenile Idiopathic Arthritis (JIA) is a complex autoimmune rheumatic disease of largely unknown cause. Evidence is growing that epigenetic variation, particularly DNA methylation, is associated with autoimmune disease. However, nothing is currently known about the potential role of aberrant DNA methylation in JIA. As a first step to addressing this knowledge gap, we have profiled DNA methylation in purified CD4+ T cells from JIA subjects and controls. Genomic DNA was isolated from peripheral blood CD4+ T cells from 14 oligoarticular and polyarticular JIA cases with active disease, and healthy age- and sex-matched controls. Genome-scale methylation analysis was carried out using the Illumina Infinium HumanMethylation27 BeadChip. Methylation data at >25,000 CpGs was compared in a case-control study design. RESULTS: Methylation levels were significantly different (FDR adjusted p<0.1) at 145 loci. Removal of four samples exposed to methotrexate had a striking impact on the outcome of the analysis, reducing the number of differentially methylated loci to 11. The methotrexate-naive analysis identified reduced methylation at the gene encoding the pro-inflammatory cytokine IL32, which was subsequently replicated using a second analysis platform and a second set of case-control pairs. CONCLUSIONS: Our data suggests that differential T cell DNA methylation may be a feature of JIA, and that reduced methylation at IL32 is associated with this disease. Further work in larger prospective and longitudinal sample collections is required to confirm these findings, assess whether the identified differences are causal or consequential of disease, and further investigate the epigenetic modifying properties of therapeutic regimens.
Discovery and analysis of consistent active subnetworks in cancers
(BMC, 2013-01-21)
Gene expression profiles can show significant changes when genetically diseased cells are compared with non-diseased cells. Biological networks are often used to identify active subnetworks (ASNs) of the diseases from the expression profiles to understand the reason behind the observed changes. Current methodologies for discovering ASNs mostly use undirected PPI networks and node centric approaches. This can limit their ability to find the meaningful ASNs when using integrated networks having comprehensive information than the traditional protein-protein interaction networks. Using appropriate scoring functions to assess both genes and their interactions may allow the discovery of better ASNs. In this paper, we present CASNet, which aims to identify better ASNs using (i) integrated interaction networks (mixed graphs), (ii) directions of regulations of genes, and (iii) combined node and edge scores. We simplify and extend previous methodologies to incorporate edge evaluations and lessen their sensitivity to significance thresholds. We formulate our objective functions using mixed integer programming (MIP) and show that optimal solutions may be obtained. We compare the ASNs obtained by CASNet and similar other approaches to show that CASNet can often discover more meaningful and stable regulatory ASNs. Our analysis of a breast cancer dataset finds that the positive feedback loops across 7 genes, AR, ESR1, MYC, E2F2, PGR, BCL2 and CCND1 are conserved across the basal/triple negative subtypes in multiple datasets that could potentially explain the aggressive nature of this cancer subtype. Furthermore, comparison of the basal subtype of breast cancer and the mesenchymal subtype of glioblastoma ASNs shows that an ASN in the vicinity of IL6 is conserved across the two subtypes. This result suggests that subtypes of different cancers can show molecular similarities indicating that the therapeutic approaches in different types of cancers may be shared.
Whole Exome Sequencing Suggests Much of Non-BRCA1/BRCA2 Familial Breast Cancer Is Due to Moderate and Low Penetrance Susceptibility Alleles
(PUBLIC LIBRARY SCIENCE, 2013-02-08)
The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.
Menin and p53 have non-synergistic effects on tumorigenesis in mice
(BMC, 2012-06-18)
BACKGROUND: While it is now more than a decade since the first description of the gene mutation underlying the tumour predisposition syndrome multiple endocrine neoplasia type 1 (MEN1), the mechanism by which its protein product menin acts to prevent development of tumours is still poorly understood. METHODS: We undertook a genetic experiment to assess whether menin synergises with p53. Mice carrying various combinations of Men1 and Trp53 mutations were generated then survival and pathology assessed. RESULTS: While homozygous loss of Trp53 in mice resulted in early onset, aggressive tumours and profoundly reduced lifespan, heterozygous loss of either Trp53 or Men1 caused later onset disease, with a spectrum of tumours characteristic of each tumour suppressor gene. Loss of one copy of Men1 in animals also lacking both alleles of Trp53 did not exacerbate phenotype, based on survival, animal weight or sites of pathology, compared to Trp53 deletion alone. Dual heterozygous deletion of Men1 and Trp53 resulted in a small reduction in lifespan compared to the individual mutations, without new tumour sites. In the adrenal, we observed development of cortical tumours in dual heterozygous animals, as we have previously seen in Men1+/- animals, and there was loss of heterozygosity at the Men1 allele in these tumours. Median number of pathology observations per animal was increased in dual heterozygous animals compared with heterozygous loss of Trp53 alone. CONCLUSIONS: Simultaneous heterozygous deletion of Men1 in animals with either heterozygous or homozygous deletion of Trp53 did not result in formation of tumours at any new sites, implying additive rather than synergistic effects of these pathways. Mice that were Men1+/- in addition to Trp53+/- had tumours in endocrine as well as other sites, implying that increase in total tumour burden, at sites typically associated with either Men1 or Trp53 loss, contributed to the slight decrease in survival in Men1+/-: Trp53+/- animals in comparison with their littermates.
p53-Dependent Transcriptional Responses to Interleukin-3 Signaling
(PUBLIC LIBRARY SCIENCE, 2012-02-14)
p53 is critical in the normal response to a variety of cellular stresses including DNA damage and loss of p53 function is a common feature of many cancers. In hematological malignancies, p53 deletion is less common than in solid malignancies but is associated with poor prognosis and resistance to chemotherapy. Compared to their wild-type (WT) counterparts, hematopoietic progenitor cells lacking p53 have a greater propensity to survive cytokine loss, in part, due to the failure to transcribe Puma, a proapoptotic Bcl-2 family member. Using expression arrays, we have further characterized the differences that distinguish p53(-/-) cells from WT myeloid cells in the presence of Interleukin-3 (IL-3) to determine if such differences contribute to the increased clonogenicity and survival responses observed in p53(-/-) cells. We show that p53(-/-) cells have a deregulated intracellular signaling environment and display a more rapid and sustained response to IL-3. This was accompanied by an increase in active ERK1/2 and a dependence on an intact MAP kinase signaling pathway. Contrastingly, we find that p53(-/-) cells are independent on AKT for their survival. Thus, loss of p53 in myeloid cells results in an altered transcriptional and kinase signaling environment that favors enhanced cytokine signaling.
Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers
(BMC, 2012-01-01)
INTRODUCTION: Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). METHODS: To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. RESULTS: Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049). CONCLUSIONS: The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers.