Centre for Eye Research Australia (CERA) - Research Publications
Search
Search
Now showing items 1-12 of 103
Association of the Hepatocyte Growth Factor Gene with Keratoconus in an Australian Population
(PUBLIC LIBRARY SCIENCE, 2014-01-08)
PURPOSE: A previous study has indicated suggestive association of the hepatocyte growth factor (HGF) gene with Keratoconus. We wished to assess this association in an independent Caucasian cohort as well as assess its association with corneal curvature. PARTICIPANTS: Keratoconus patients were recruited from private and public clinics in Melbourne, Australia. Non-keratoconic individuals were identified from the Genes in Myopia (GEM) study from Australia. A total of 830 individuals were used for the analysis including 157 keratoconic and 673 non keratoconic subjects. METHODS: Tag single nucleotide polymorphisms (tSNPs) were chosen to encompass the hepatocyte growth factor gene as well as 2 kb upstream of the start codon through to 2 kb downstream of the stop codon. Logistic and linear regression including age and gender as covariates were applied in statistical analysis with subsequent Bonferroni correction. RESULTS: Ten tSNPs were genotyped. Following statistical analysis and multiple testing correction, a statistically significant association was found for the tSNP rs2286194 {p = 1.1×10-(3) Odds Ratio 0.52, 95% CI--0.35, 0.77} for keratoconus. No association was found between the 10 tSNPs and corneal curvature. CONCLUSIONS: These findings provide additional evidence of significant association of the HGF gene with Keratoconus. This association does not appear to act through the corneal curvature route.
Association of Genetic Variants with Primary Angle Closure Glaucoma in Two Different Populations
(PUBLIC LIBRARY SCIENCE, 2013-06-28)
PURPOSE: A recent large genome-wide association study (GWAS) identified multiple variants associated with primary angle-closure glaucoma (PACG). The present study investigated the role of these variants in two cohorts with PACG recruited from Australia and Nepal. METHOD: Patients with PACG and appropriate controls were recruited from eye clinics in Australia (n = 232 cases and n = 288 controls) and Nepal (n = 106 cases and 204 controls). Single nucleotide polymorphisms (SNPs) rs3753841 (COL11A1), rs1015213 (located between PCMTD1 and ST18), rs11024102 (PLEKHA7), and rs3788317 (TXNRD2) were selected and genotyped on the Sequenom. Analyses were conducted using PLINK and METAL. RESULTS: After adjustment for age and sex, SNP rs3753841 was found to be significantly associated with PACG in the Australian cohort (p = 0.017; OR = 1.34). SNPs rs1015213 (p = 0.014; OR 2.35) and rs11024102 (p = 0.039; OR 1.43) were significantly associated with the disease development in the Nepalese cohort. None of these SNPs survived Bonferroni correction (p = 0.05/4 = 0.013). However, in the combined analysis, of both cohorts, rs3753841 and rs1015213 showed significant association with p-values of 0.009 and 0.004, respectively both surviving Bonferroni correction. SNP rs11024102 showed suggestive association with PACG (p-value 0.035) and no association was found with rs3788317. CONCLUSION: The present results support the initial GWAS findings, and confirm the SNP's contribution to PACG. This is the first study to investigate these loci in both Australian Caucasian and Nepalese populations.
The Effects of CX(3)CR1 Deficiency and Irradiation on the Homing of Monocyte-Derived Cell Populations in the Mouse Eye
(PUBLIC LIBRARY SCIENCE, 2013-07-03)
This study examined whether CX3CR1 deficiency altered monocytic cell replenishment dynamics in ocular tissues in the context of radiation chimeras. Long-term effects of irradiation and effects of sublethal irradiation on ocular macrophages were also assessed. Bone marrow from BALB/c Cx 3 cr1 (+/gfp) or Cx 3 cr1 (gfp/gfp) mice was used to reconstitute full body irradiated WT mice and donor cell densities in the uveal tract were compared at 4 and 8 weeks post-transplantation. BALB/c and C57BL/6J chimeric mice were examined at 6 months of age to determine strain-related differences in microglial replenishment and radiation sensitivity. A separate cohort of mice were sublethally irradiated (5.5 Gy) and retinal tissue assessed 8 and 12 weeks later. CX3CR1 deficiency altered the early replenishment of monocytes in the posterior iris but not in the iris stroma, choroid or retina. In six month old chimeric mice, there were significantly higher GFP(+) cell densities in the uveal tract when compared to non-irradiated 8-12 week old Cx 3 cr1 (+/gfp) mice. Additionally, MHC Class II expression was upregulated on hyalocytes and GFP(+) cells in the peripheral retina and the repopulation of microglia appeared to be more rapid in C57BL/6J mice compared to BALB/c mice. Transient expression of MHC Class II was observed on retinal vasculature in sublethally irradiated mice. These data indicate CX3CR1-deficiency only slightly alters monocyte-derived cell replenishment in the murine uveal tract. Lethal irradiation leads to long-term increase in monocytic cell density in the uveal tract and retinal microglial activation, possibly as a sequelae to local irradiation induced injury. Microglial replenishment in this model appears to be strain dependent.
L1TD1 Is a Marker for Undifferentiated Human Embryonic Stem Cells
(PUBLIC LIBRARY SCIENCE, 2011-04-29)
BACKGROUND: Human embryonic stem cells (hESC) are stem cells capable of differentiating into cells representative of the three primary embryonic germ layers. There has been considerable interest in understanding the mechanisms regulating stem cell pluripotency, which will ultimately lead to development of more efficient methods to derive and culture hESC. In particular, Oct4, Sox2 and Nanog are transcription factors known to be important in maintenance of hESC. However, many of the downstream targets of these transcription factors are not well characterized. Furthermore, it remains unknown whether additional novel stem cell factors are involved in the establishment and maintenance of the stem cell state. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that a novel gene, L1TD1 (also known as FLJ10884 or ECAT11), is abundantly expressed in undifferentiated hESC. Differentiation of hESC via embryoid body (EB) formation or BMP4 treatment results in the rapid down-regulation of L1TD1 expression. Furthermore, populations of undifferentiated and differentiated hESC were sorted using the stem cell markers SSEA4 and TRA160. Our results show that L1TD1 is enriched in the SSEA4-positive or TRA160-positive population of hESC. Using chromatin immunoprecipitation we found enriched association of Nanog to the predicted promoter region of L1TD1. Furthermore, siRNA-mediated knockdown of Nanog in hESC also resulted in downregulation of L1TD1 expression. Finally, using luciferase reporter assay we demonstrated that Nanog can activate the L1TD1 upstream promoter region. Altogether, these results provide evidence that L1TD1 is a downstream target of Nanog. CONCLUSION/SIGNIFICANCE: Taken together, our results suggest that L1TD1 is a downstream target of Nanog and represents a useful marker for identifying undifferentiated hESC.
Annexin Peptide Ac2-26 Suppresses TNF alpha-Induced Inflammatory Responses via Inhibition of Rac1-Dependent NADPH Oxidase in Human Endothelial Cells
(PUBLIC LIBRARY SCIENCE, 2013-04-24)
The anti-inflammatory peptide annexin-1 binds to formyl peptide receptors (FPR) but little is known about its mechanism of action in the vasculature. Here we investigate the effect of annexin peptide Ac2-26 on NADPH oxidase activity induced by tumour necrosis factor alpha (TNFα) in human endothelial cells. Superoxide release and intracellular reactive oxygen species (ROS) production from NADPH oxidase was measured with lucigenin-enhanced chemiluminescence and 2',7'-dichlorodihydrofluorescein diacetate, respectively. Expression of NADPH oxidase subunits and intracellular cell adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) were determined by real-time PCR and Western blot analysis. Promoter activity of nuclear factor kappa B (NFκB) was measured by luciferase activity assay. TNFα stimulated NADPH-dependent superoxide release, total ROS formation and expression of ICAM-1and VCAM-1. Pre-treatment with N-terminal peptide of annexin-1 (Ac2-26, 0.5-1.5 µM) reduced all these effects, and the inhibition was blocked by the FPRL-1 antagonist WRW4. Furthermore, TNFα-induced NFκB promoter activity was attenuated by both Ac2-26 and NADPH oxidase inhibitor diphenyliodonium (DPI). Surprisingly, Nox4 gene expression was reduced by TNFα whilst expression of Nox2, p22phox and p67phox remained unchanged. Inhibition of NADPH oxidase activity by either dominant negative Rac1 (N17Rac1) or DPI significantly attenuated TNFα-induced ICAM-1and VCAM-1 expression. Ac2-26 failed to suppress further TNFα-induced expression of ICAM-1 and VCAM-1 in N17Rac1-transfected cells. Thus, Ac2-26 peptide inhibits TNFα-activated, Rac1-dependent NADPH oxidase derived ROS formation, attenuates NFκB pathways and ICAM-1 and VCAM-1 expression in endothelial cells. This suggests that Ac2-26 peptide blocks NADPH oxidase activity and has anti-inflammatory properties in the vasculature which contributes to modulate in reperfusion injury inflammation and vascular disease.
Neutralization of IL-17 ameliorates uveitis but damages photoreceptors in a murine model of spondyloarthritis
(BMC, 2012-01-01)
INTRODUCTION: Uveitis, or intraocular inflammatory disease, is a frequent extra-articular manifestation of several forms of arthritis. Despite the frequent co-occurrence of uveitis and arthritis, little is understood of the eye's predisposition to this disease. We recently described a previously unreported uveitis in a murine model of spondyloarthropathy triggered by autoimmunity to aggrecan, a prominent proteoglycan (PG) macromolecule in cartilage. In contrast to the joint and spine, wherein interferon-gamma (IFNγ) deficiency reduced disease, IFNγ deficiency worsened uveitis. Given the regulatory role of IFNγ on the Th17 response and the current focus of anti-interleukin-17 therapeutics in patients with uveitis and spondyloarthritis, we sought to determine the extent to which interleukin (IL)-17 mediates uveitis in the absence of IFNγ. METHODS: Antigen specific T cell cytokine production was measured in splenocyte cultures using multiplex-ELISA. Transgenic (Tg) mice expressing the T cell receptor (TCR) recognizing the dominant arthritogenic epitope in the G1 domain of PG (TCR-Tg), also lacking IFNγ, were immunized with PG. Mice were then systemically administered an anti-IL-17 neutralizing antibody. The onset and severity of peripheral arthritis was evaluated by clinical scoring criteria and histology. Uveitis was assessed using intravital videomicroscopy, which visualizes leukocyte trafficking within the vasculature and tissue of the iris, and by histology. RESULTS: TCR-Tg splenocytes stimulated in vitro with recombinant G1 peptide demonstrated exacerbated production of cytokines, such as macrophage inflammatory protein (MIP)-1α, MIP-1β, IL-1β, and most notably IL-17A as a consequence of IFNγ deficiency. In vivo, IL-17 inhibition prevented the component of PG-induced arthritis that occurs independently of IFNγ. Blockade of IL-17 ameliorated the ongoing leukocyte trafficking responses within the iris vasculature and tissue, which coincided with reduced infiltration of leukocytes within the anterior and posterior eye segments. However, the anti-IL-17 treatment resulted in unanticipated photoreceptor toxicity. CONCLUSIONS: These data support a protective, regulatory role for IFNγ in suppression of IL-17-mediated intraocular disease and to a lesser extent, joint disease. The unanticipated photoreceptor toxicity raises some caution regarding the use of anti-IL-17 therapeutics until the mechanism of this potential effect is determined.
Assessment of the Association of Matrix Metalloproteinases with Myopia, Refractive Error and Ocular Biometric Measures in an Australian Cohort
(PUBLIC LIBRARY SCIENCE, 2012-10-15)
Extracellular matrix proteins have been implicated in protein remodelling of the sclera in refractive error. The matrix metalloproteinases (MMPs) falling into the collagenase (MMP1, MMP8, MMP13), gelatinase (MMP2, MMP9) and stromelysin (MMP3, MMP10, MMP11) functional groups are particularly important. We wished to assess their association with myopia, refractive error and ocular biometric measures in an Australian cohort. A total of 543 unrelated individuals of Caucasian ethnicity were genotyped including 269 myopes (≤-1.0D) and 274 controls (>-1.0D). Tag single nucleotide polymorphisms (SNPs) (n = 53) were chosen to encompass these eight MMPs. Association tests were performed using linear and logistic regression analysis with age and gender as covariates. Spherical equivalent, myopia, axial length, anterior chamber depth and corneal curvature were the phenotypes of interest. Initial findings indicated that the best p values for each trait were 0.02 for myopia at rs2274755 (MMP9), 0.02 for SE at both rs3740938 (MMP8) and rs131451 (MMP11), 0.01 for axial length at rs11225395 (MMP8), 0.01 for anterior chamber depth at rs498186 (MMP1) and 0.02 at rs10488 (MMP1). However, following correction for multiple testing, none of these SNPs remained statistically significant. Our data suggests that the MMPs in the collagenase, gelatinase and stromelysin categories do not appear to be associated with myopia, refractive error or ocular biometric measures in this cohort.
Cholinergic connectivity: it's implications for psychiatric disorders
(FRONTIERS MEDIA SA, 2013-05-03)
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Mitochondrial Oxidative Phosphorylation Compensation May Preserve Vision in Patients with OPA1-Linked Autosomal Dominant Optic Atrophy
(PUBLIC LIBRARY SCIENCE, 2011-06-22)
Autosomal Dominant Optic Atrophy (ADOA) is the most common inherited optic atrophy where vision impairment results from specific loss of retinal ganglion cells of the optic nerve. Around 60% of ADOA cases are linked to mutations in the OPA1 gene. OPA1 is a fission-fusion protein involved in mitochondrial inner membrane remodelling. ADOA presents with marked variation in clinical phenotype and varying degrees of vision loss, even among siblings carrying identical mutations in OPA1. To determine whether the degree of vision loss is associated with the level of mitochondrial impairment, we examined mitochondrial function in lymphoblast cell lines obtained from six large Australian OPA1-linked ADOA pedigrees. Comparing patients with severe vision loss (visual acuity [VA]<6/36) and patients with relatively preserved vision (VA>6/9) a clear defect in mitochondrial ATP synthesis and reduced respiration rates were observed in patients with poor vision. In addition, oxidative phosphorylation (OXPHOS) enzymology in ADOA patients with normal vision revealed increased complex II+III activity and levels of complex IV protein. These data suggest that OPA1 deficiency impairs OXPHOS efficiency, but compensation through increases in the distal complexes of the respiratory chain may preserve mitochondrial ATP production in patients who maintain normal vision. Identification of genetic variants that enable this response may provide novel therapeutic insights into OXPHOS compensation for preventing vision loss in optic neuropathies.
Common variants near FRK/COL10A1 and VEGFA are associated with advanced age-related macular degeneration
(OXFORD UNIV PRESS, 2011-09-15)
Despite significant progress in the identification of genetic loci for age-related macular degeneration (AMD), not all of the heritability has been explained. To identify variants which contribute to the remaining genetic susceptibility, we performed the largest meta-analysis of genome-wide association studies to date for advanced AMD. We imputed 6 036 699 single-nucleotide polymorphisms with the 1000 Genomes Project reference genotypes on 2594 cases and 4134 controls with follow-up replication of top signals in 5640 cases and 52 174 controls. We identified two new common susceptibility alleles, rs1999930 on 6q21-q22.3 near FRK/COL10A1 [odds ratio (OR) 0.87; P = 1.1 × 10(-8)] and rs4711751 on 6p12 near VEGFA (OR 1.15; P = 8.7 × 10(-9)). In addition to the two novel loci, 10 previously reported loci in ARMS2/HTRA1 (rs10490924), CFH (rs1061170, and rs1410996), CFB (rs641153), C3 (rs2230199), C2 (rs9332739), CFI (rs10033900), LIPC (rs10468017), TIMP3 (rs9621532) and CETP (rs3764261) were confirmed with genome-wide significant signals in this large study. Loci in the recently reported genes ABCA1 and COL8A1 were also detected with suggestive evidence of association with advanced AMD. The novel variants identified in this study suggest that angiogenesis (VEGFA) and extracellular collagen matrix (FRK/COL10A1) pathways contribute to the development of advanced AMD.
The Impact of Successful Cataract Surgery on Quality of Life, Household Income and Social Status in South India
(PUBLIC LIBRARY SCIENCE, 2012-08-31)
BACKGROUND: To explore the hypothesis that sight restoring cataract surgery provided to impoverished rural communities will improve not only visual acuity and vision-related quality of life (VRQoL) but also poverty and social status. METHODS: Participants were recruited at outreach camps in Tamil Nadu, South India, and underwent free routine manual small incision cataract surgery (SICS) with intra-ocular lens (IOL) implantation, and were followed up one year later. Poverty was measured as monthly household income, being engaged in income generating activities and number of working household members. Social status was measured as rates of re-marriage amongst widowed participants. VRQoL was measured using the IND-VFQ-33. Associations were explored using logistic regression (SPSS 19). RESULTS: Of the 294 participants, mean age ± standard deviation (SD) 60 ± 8 years, 54% men, only 11% remained vision impaired at follow up (67% at baseline; p<0.001). At one year, more participants were engaged in income generating activities (44.7% to 77.7%; p<0.001) and the proportion of households with a monthly income <1000 Rps. decreased from 50.5% to 20.5% (p<0.05). Overall VRQoL improved (p<0.001). Participants who had successful cataract surgery were less likely to remain in the lower categories of monthly household income (OR 0.05-0.22; p<0.02) and more likely to be engaged in income earning activities one year after surgery (OR 3.28; p = 0.006). Participants widowed at baseline who had successful cataract surgery were less likely to remain widowed at one year (OR 0.02; p = 0.008). CONCLUSION: These findings indicate the broad positive impact of sight restoring cataract surgery on the recipients' as well as their families' lives. Providing free high quality cataract surgery to marginalized rural communities will not only alleviate avoidable blindness but also - to some extent - poverty in the long run.
Common Genetic Determinants of Intraocular Pressure and Primary Open-Angle Glaucoma
(PUBLIC LIBRARY SCIENCE, 2012-05-01)
Intraocular pressure (IOP) is a highly heritable risk factor for primary open-angle glaucoma and is the only target for current glaucoma therapy. The genetic factors which determine IOP are largely unknown. We performed a genome-wide association study for IOP in 11,972 participants from 4 independent population-based studies in The Netherlands. We replicated our findings in 7,482 participants from 4 additional cohorts from the UK, Australia, Canada, and the Wellcome Trust Case-Control Consortium 2/Blue Mountains Eye Study. IOP was significantly associated with rs11656696, located in GAS7 at 17p13.1 (p=1.4×10(-8)), and with rs7555523, located in TMCO1 at 1q24.1 (p=1.6×10(-8)). In a meta-analysis of 4 case-control studies (total N = 1,432 glaucoma cases), both variants also showed evidence for association with glaucoma (p=2.4×10(-2) for rs11656696 and p=9.1×10(-4) for rs7555523). GAS7 and TMCO1 are highly expressed in the ciliary body and trabecular meshwork as well as in the lamina cribrosa, optic nerve, and retina. Both genes functionally interact with known glaucoma disease genes. These data suggest that we have identified two clinically relevant genes involved in IOP regulation.