Filtering Spurious Events from Event Streams of Business Processes

Download
Author
van Zelst, SJ; Sani, MF; Ostovar, A; Conforti, R; La Rosa, MEditor
Krogstie, J; Reijers, HADate
2018-06-04Source Title
ADVANCED INFORMATION SYSTEMS ENGINEERING, CAISE 2018Publisher
SpringerAffiliation
Computing and Information SystemsMetadata
Show full item recordDocument Type
Conference PaperCitations
van Zelst, S. J., Sani, M. F., Ostovar, A., Conforti, R. & La Rosa, M. (2018). Filtering Spurious Events from Event Streams of Business Processes. Krogstie, J (Ed.) Reijers, HA (Ed.) ADVANCED INFORMATION SYSTEMS ENGINEERING, CAISE 2018, 10816, pp.35-52. Springer. https://doi.org/10.1007/978-3-319-91563-0_3.Access Status
Open AccessAbstract
Process mining aims at gaining insights into business processes by analysing event data recorded during process execution. The majority of existing process mining techniques works offline, i.e. using static, historical data stored in event logs. Recently, the notion of online process mining has emerged, whereby techniques are applied on live event streams, as process executions un- fold. Analysing event streams allows us to gain instant insights into business processes. However, current techniques assume the input stream to be completely free of noise and other anomalous behaviour. Hence, applying these techniques on real data leads to results of inferior quality. In this paper, we propose an event processor that enables us to effectively filter out spurious events from a live event stream. Our experiments show that we are able to effectively filter out spurious events from the input stream and, as such, enhance online process mining results.
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References