Show simple item record

dc.contributor.authorVerenich, I
dc.contributor.authorMõškovski, S
dc.contributor.authorRaboczi, S
dc.contributor.authorDumas, M
dc.contributor.authorLa Rosa, M
dc.contributor.authorMaggi, FM
dc.date.available2018-04-11T02:37:44Z
dc.date.available2018-04-06
dc.date.available2018-04-06
dc.date.available2018-04-06
dc.date.issued2018-06-15
dc.identifier.citationVerenich, I., Mõškovski, S., Raboczi, S., Dumas, M., La Rosa, M. & Maggi, F. M. (2018). Predictive Process Monitoring in Apromore. Springer-Verlag, Journals. Tallinn, Estonia.
dc.identifier.isbn978-3-319-92900-2
dc.identifier.issn1865-1348
dc.identifier.urihttp://hdl.handle.net/11343/210450
dc.description.abstractThis paper discusses the integration of Nirdizati, a tool for predictive process monitoring, into the Web-based process analytics platform Apromore. Through this integration, Apromore’s users can use event logs stored in the Apromore repository to train a range of predictive models, and later use the trained models to predict various performance indicators of running process cases from a live event stream. For example, one can predict the remaining time or the next events until case completion, the case outcome, or the violation of compliance rules or internal policies. The predictions can be presented graphically via a dashboard that offers multiple visualization options, including a range of summary statistics about ongoing and past process cases. They can also be exported into CSV for periodic reporting or to be visualized in third-parties business intelligence tools. Based on these predictions, operations managers may identify potential issues early on, and take remedial actions in a timely fashion, e.g. reallocating resources from one case onto another to avoid that the case runs overtime.
dc.publisherSpringer-Verlag, Journals
dc.sourceInternational Conference on Advanced Information Systems Engineering (CAiSE)
dc.titlePredictive Process Monitoring in Apromore
dc.typeConference Proceeding
dc.identifier.doi10.1007/978-3-319-92901-9_21
melbourne.affiliation.departmentComputing and Information Systems
melbourne.source.titleLecture Notes in Business Information Processing
melbourne.source.titleInformation Systems in the Big Data Era - Proceedings CAiSE Forum 2018
melbourne.source.volume317
melbourne.source.pages244-253
melbourne.identifier.arcDP180102839
melbourne.elementsid1311409
melbourne.contributor.authorVerenich, Ilya
melbourne.contributor.authorRaboczi, Simon
melbourne.contributor.authorLa Rosa, Marcello
dc.identifier.eissn1865-1356
melbourne.conference.locationTallinn, Estonia
melbourne.identifier.fundernameidAUST RESEARCH COUNCIL, DP180102839
pubs.acceptance.date2018-04-06
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record