Research, Innovation and Commercialisation - Research Publications
Search
Search
Now showing items 1-12 of 25
Sequential Induction of Effector Function, Tissue Migration and Cell Death during Polyclonal Activation of Mouse Regulatory T-Cells
(PUBLIC LIBRARY SCIENCE, 2012-11-30)
The ability of CD4(+)Foxp3(+) regulatory T-cells (Treg) to produce interleukin (IL)-10 is important for the limitation of inflammation at environmental interfaces like colon or lung. Under steady state conditions, however, few Tregs produce IL-10 ex vivo. To investigate the origin and fate of IL-10 producing Tregs we used a superagonistic mouse anti-mouse CD28 mAb (CD28SA) for polyclonal in vivo stimulation of Tregs, which not only led to their numeric expansion but also to a dramatic increase in IL-10 production. IL-10 secreting Tregs strongly upregulated surface receptors associated with suppressive function as compared to non-producing Tregs. Furthermore, polyclonally expanding Tregs shifted their migration receptor pattern after activation from a CCR7(+)CCR5(-) lymph node-seeking to a CCR7(-)CCR5(+) inflammation-seeking phenotype, explaining the preferential recruitment of IL-10 producers to sites of ongoing immune responses. Finally, we observed that IL-10 producing Tregs from CD28SA stimulated mice were more apoptosis-prone in vitro than their IL-10 negative counterparts. These findings support a model where prolonged activation of Tregs results in terminal differentiation towards an IL-10 producing effector phenotype associated with a limited lifespan, implicating built-in termination of immunosuppression.
Patents Associated with High-Cost Drugs in Australia
(PUBLIC LIBRARY SCIENCE, 2013-04-05)
Australia, like most countries, faces high and rapidly-rising drug costs. There are longstanding concerns about pharmaceutical companies inappropriately extending their monopoly position by "evergreening" blockbuster drugs, through misuse of the patent system. There is, however, very little empirical information about this behaviour. We fill the gap by analysing all of the patents associated with 15 of the costliest drugs in Australia over the last 20 years. Specifically, we search the patent register to identify all the granted patents that cover the active pharmaceutical ingredient of the high-cost drugs. Then, we classify the patents by type, and identify their owners. We find a mean of 49 patents associated with each drug. Three-quarters of these patents are owned by companies other than the drug's originator. Surprisingly, the majority of all patents are owned by companies that do not have a record of developing top-selling drugs. Our findings show that a multitude of players seek monopoly control over innovations to blockbuster drugs. Consequently, attempts to control drug costs by mitigating misuse of the patent system are likely to miss the mark if they focus only on the patenting activities of originators.
Biosecurity interceptions of an invasive lizard: origin of stowaways and human-assisted spread within New Zealand
(WILEY, 2013-02-01)
Globalization, and the resultant movement of animals beyond their native range, creates challenges for biosecurity agencies. Limited records of unintentional introductions inhibit our understanding of the trade pathways, transport vectors and mechanisms through which hitchhiker organisms are spread as stowaways. Here, we adopt a phylogeographic approach to determine the source and human-mediated dispersal pathways of New Zealand's only invasive lizard, the delicate skink (Lampropholis delicata), intercepted by biosecurity agencies in New Zealand. Biosecurity agencies correctly predicted the source region of 77% of stowaways, which were usually solitary adults, arriving via air or sea pathways during the cooler months, evading initial border checks and alive when detected. New arrivals from Australia comprised 16% of detections originating from the region between Brisbane and Sydney. Our analyses indicate human-mediated dispersal has driven the post-border spread of L. delicata within New Zealand. Propagule pressure was substantially greater for L. delicata compared with the noninvasive, congeneric Lampropholis guichenoti. Our results highlight the transport pathways, spread mechanisms, and stowaway characteristics of Lampropholis lizards entering New Zealand, which could enhance current biosecurity protocols and prevent the establishment of additional lizard species.
A clustered randomised trial examining the effect of social marketing and community mobilisation on the age of uptake and levels of alcohol consumption by Australian adolescents
(BMJ PUBLISHING GROUP, 2013-01-01)
INTRODUCTION: Throughout the world, alcohol consumption is common among adolescents. Adolescent alcohol use and misuse have prognostic significance for several adverse long-term outcomes, including alcohol problems, alcohol dependence, school disengagement and illicit drug use. The aim of this study was to evaluate whether randomisation to a community mobilisation and social marketing intervention reduces the proportion of adolescents who initiate alcohol use before the Australian legal age of 18, and the frequency and amount of underage adolescent alcohol consumption. METHOD AND ANALYSIS: The study comprises 14 communities matched with 14 non-contiguous communities on socioeconomic status (SES), location and size. One of each pair was randomly allocated to the intervention. Baseline levels of adolescent alcohol use were estimated through school surveys initiated in 2006 (N=8500). Community mobilisation and social marketing interventions were initiated in 2011 to reduce underage alcohol supply and demand. The setting is communities in three Australian states (Victoria, Queensland and Western Australia). Students (N=2576) will complete school surveys in year 8 in 2013 (average age 12). PRIMARY OUTCOMES: (1) lifetime initiation and (2) monthly frequency of alcohol use. Reports of social marketing and family and community alcohol supply sources will also be assessed. Point estimates with 95% CIs will be compared for student alcohol use in intervention and control communities. Changes from 2006 to 2013 will be examined; multilevel modelling will assess whether random assignment of communities to the intervention reduced 2013 alcohol use, after accounting for community level differences. Analyses will also assess whether exposure to social marketing activities increased the intervention target of reducing alcohol supply by parents and community members. TRIAL REGISTRATION: ACTRN12612000384853.
Genome-Wide Association Scan Identifies a Risk Locus for Preeclampsia on 2q14, Near the Inhibin, Beta B Gene
(PUBLIC LIBRARY SCIENCE, 2012-03-14)
Elucidating the genetic architecture of preeclampsia is a major goal in obstetric medicine. We have performed a genome-wide association study (GWAS) for preeclampsia in unrelated Australian individuals of Caucasian ancestry using the Illumina OmniExpress-12 BeadChip to successfully genotype 648,175 SNPs in 538 preeclampsia cases and 540 normal pregnancy controls. Two SNP associations (rs7579169, p = 3.58×10(-7), OR = 1.57; rs12711941, p = 4.26×10(-7), OR = 1.56) satisfied our genome-wide significance threshold (modified Bonferroni p<5.11×10(-7)). These SNPs reside in an intergenic region less than 15 kb downstream from the 3' terminus of the Inhibin, beta B (INHBB) gene on 2q14.2. They are in linkage disequilibrium (LD) with each other (r(2) = 0.92), but not (r(2)<0.80) with any other genotyped SNP ±250 kb. DNA re-sequencing in and around the INHBB structural gene identified an additional 25 variants. Of the 21 variants that we successfully genotyped back in the case-control cohort the most significant association observed was for a third intergenic SNP (rs7576192, p = 1.48×10(-7), OR = 1.59) in strong LD with the two significant GWAS SNPs (r(2)>0.92). We attempted to provide evidence of a putative regulatory role for these SNPs using bioinformatic analyses and found that they all reside within regions of low sequence conservation and/or low complexity, suggesting functional importance is low. We also explored the mRNA expression in decidua of genes ±500 kb of INHBB and found a nominally significant correlation between a transcript encoded by the EPB41L5 gene, ∼250 kb centromeric to INHBB, and preeclampsia (p = 0.03). We were unable to replicate the associations shown by the significant GWAS SNPs in case-control cohorts from Norway and Finland, leading us to conclude that it is more likely that these SNPs are in LD with as yet unidentified causal variant(s).
Drosophila Rbp6 Is an Orthologue of Vertebrate Msi-1 and Msi-2, but Does Not Function Redundantly with dMsi to Regulate Germline Stem Cell Behaviour
(PUBLIC LIBRARY SCIENCE, 2012-11-27)
The vertebrate RNA-binding proteins, Musashi-1 (Msi-1) and Musashi-2 (Msi-2) are expressed in multiple stem cell populations. A role for Musashi proteins in preventing stem cell differentiation has been suggested from genetic analysis of the Drosophila family member, dMsi, and both vertebrate Msi proteins function co-operatively to regulate neural stem cell behaviour. Here we have identified a second Drosophila Msi family member, Rbp6, which shares more amino acid identity with vertebrate Msi-1 and Msi-2 than dMsi. We generated an antibody that detects most Rbp6 splice isoforms and show that Rbp6 is expressed in multiple tissues throughout development. However, Rbp6 deletion mutants generated in this study are viable and fertile, and show only minor defects. We used Drosophila spermatogonial germline stem cells (GSC's) as a model to test whether Drosophila Msi proteins function redundantly to regulate stem cell behaviour. However, like vertebrate Msi-1 and Msi-2, Rbp6 and Msi do not appear to be co-expressed in spermatogenic GSC's and do not function co-operatively in the regulation of GSC maintenance. Thus while two Msi family members are present in Drosophila, the function of the family members have diverged.
Enhanced Auditory Neuron Survival Following Cell-Based BDNF Treatment in the Deaf Guinea Pig
(PUBLIC LIBRARY SCIENCE, 2011-04-15)
Exogenous neurotrophin delivery to the deaf cochlea can prevent deafness-induced auditory neuron degeneration, however, we have previously reported that these survival effects are rapidly lost if the treatment stops. In addition, there are concerns that current experimental techniques are not safe enough to be used clinically. Therefore, for such treatments to be clinically transferable, methods of neurotrophin treatment that are safe, biocompatible and can support long-term auditory neuron survival are necessary. Cell transplantation and gene transfer, combined with encapsulation technologies, have the potential to address these issues. This study investigated the survival-promoting effects of encapsulated BDNF over-expressing Schwann cells on auditory neurons in the deaf guinea pig. In comparison to control (empty) capsules, there was significantly greater auditory neuron survival following the cell-based BDNF treatment. Concurrent use of a cochlear implant is expected to result in even greater auditory neuron survival, and provide a clinically relevant method to support auditory neuron survival that may lead to improved speech perception and language outcomes for cochlear implant patients.
Phylogeography of the Endangered Otago Skink, Oligosoma otagense: Population Structure, Hybridisation and Genetic Diversity in Captive Populations
(PUBLIC LIBRARY SCIENCE, 2012-04-12)
Climatic cooling and substantial tectonic activity since the late Miocene have had a pronounced influence on the evolutionary history of the fauna of New Zealand's South Island. However, many species have recently experienced dramatic range reductions due to habitat fragmentation and the introduction of mammalian predators and competitors. These anthropogenic impacts have been particularly severe in the tussock grasslands of the Otago region. The Otago skink (Oligosoma otagense), endemic to the region, is one of the most critically endangered vertebrates in New Zealand. We use mitochondrial DNA sequence data to investigate the evolutionary history of the Otago skink, examine its population genetic structure, and assess the level of genetic diversity in the individuals in the captive breeding program. Our data indicate that the Otago skink diverged from its closest relatives in the Miocene, consistent with the commencement of tectonic uplift of the Southern Alps. However, there is evidence for past introgression with the scree skink (O. waimatense) in the northern Otago-southern Canterbury region. The remnant populations in eastern Otago and western Otago are estimated to have diverged in the mid-Pliocene, with no haplotypes shared between these two regions. This divergence accounts for 95% of the genetic diversity in the species. Within both regions there is strong genetic structure among populations, although shared haplotypes are generally evident between adjacent localities. Although substantial genetic diversity is present in the captive population, all individuals originate from the eastern region and the majority had haplotypes that were not evident in the intensively managed populations at Macraes Flat. Our data indicate that eastern and western populations should continue to be regarded as separate management units. Knowledge of the genetic diversity of the breeding stock will act to inform the captive management of the Otago skink and contribute to a key recovery action for the species.
The Contribution of Natural Killer Complex Loci to the Development of Experimental Cerebral Malaria
(PUBLIC LIBRARY SCIENCE, 2014-04-01)
BACKGROUND: The Natural Killer Complex (NKC) is a genetic region of highly linked genes encoding several receptors involved in the control of NK cell function. The NKC is highly polymorphic and allelic variability of various NKC loci has been demonstrated in inbred mice, providing evidence for NKC haplotypes. Using BALB.B6-Cmv1r congenic mice, in which NKC genes from C57BL/6 mice were introduced into the BALB/c background, we have previously shown that the NKC is a genetic determinant of malarial pathogenesis. C57BL/6 alleles are associated with increased disease-susceptibility as BALB.B6-Cmv1r congenic mice had increased cerebral pathology and death rates during P. berghei ANKA infection than cerebral malaria-resistant BALB/c controls. METHODS: To investigate which regions of the NKC are involved in susceptibility to experimental cerebral malaria (ECM), intra-NKC congenic mice generated by backcrossing recombinant F2 progeny from a (BALB/c x BALB.B6-Cmv1r) F1 intercross to BALB/c mice were infected with P. berghei ANKA. RESULTS: Our results revealed that C57BL/6 alleles at two locations in the NKC contribute to the development of ECM. The increased severity to severe disease in intra-NKC congenic mice was not associated with higher parasite burdens but correlated with a significantly enhanced systemic IFN-γ response to infection and an increased recruitment of CD8+ T cells to the brain of infected animals. CONCLUSIONS: Polymorphisms within the NKC modulate malarial pathogenesis and acquired immune responses to infection.
The role of chemokines in severe malaria: more than meets the eye
(CAMBRIDGE UNIV PRESS, 2014-04-01)
Plasmodium falciparum malaria is responsible for over 250 million clinical cases every year worldwide. Severe malaria cases might present with a range of disease syndromes including acute respiratory distress, metabolic acidosis, hypoglycaemia, renal failure, anaemia, pulmonary oedema, cerebral malaria (CM) and placental malaria (PM) in pregnant women. Two main determinants of severe malaria have been identified: sequestration of parasitized red blood cells and strong pro-inflammatory responses. Increasing evidence from human studies and malaria infection animal models revealed the presence of host leucocytes at the site of parasite sequestration in brain blood vessels as well as placental tissue in complicated malaria cases. These observations suggested that apart from secreting cytokines, leucocytes might also contribute to disease by migrating to the site of parasite sequestration thereby exacerbating organ-specific inflammation. This evidence attracted substantial interest in identifying trafficking pathways by which inflammatory leucocytes are recruited to target organs during severe malaria syndromes. Chemo-attractant cytokines or chemokines are the key regulators of leucocyte trafficking and their potential contribution to disease has recently received considerable attention. This review summarizes the main findings to date, investigating the role of chemokines in severe malaria and the implication of these responses for the induction of pathogenesis and immunity to infection.
A novel solid state photocatalyst for living radical polymerization under UV irradiation
(Nature Publishing Group: Open Access Journals - Option C, 2016-02-11)
This study presents the development of a novel solid state photocatalyst for the photoinduced controlled radical polymerization of methacrylates under mild UV irradiation (λmax ≈ 365 nm) in the absence of conventional photoinitiators, metal-catalysts or dye sensitizers. The photocatalyst design was based on our previous finding that organic amines can act in a synergistic photochemical reaction with thiocarbonylthio compounds to afford well controlled polymethacrylates under UV irradiation. Therefore, in the current contribution an amine-rich polymer was covalently grafted onto a solid substrate, thus creating a heterogeneous catalyst that would allow for facile removal, recovery and recyclability when employed for such photopolymerization reactions. Importantly, the polymethacrylates synthesized using the solid state photocatalyst (ssPC) show similarly excellent chemical and structural integrity as those catalysed by free amines. Moreover, the ssPC could be readily recovered and re-used, with multiple cycles of polymerization showing minimal effect on the integrity of the catalyst. Finally, the ssPC was employed in various photo-"click" reactions, permitting high yielding conjugations under photochemical control.
Kinetic properties of "dual" orexin receptor antagonists at OX1R and OX2R orexin receptors
(FRONTIERS MEDIA SA, 2013-01-01)
Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various "dual" orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [(3)H]-BBAC ((S)-N-([1,1'-biphenyl]-2-yl)-1-(2-((1-methyl-1H-benzo[d]imidazol-2-yl)thio)acetyl)pyrrolidine-2-carboxamide). In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant, and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-yl)methyl)-9-(4-methoxypyrimidin-2-yl)-2,9-diazaspiro[5.5]undecan-1-one) bind rapidly and reach equilibrium very quickly in binding and/or functional assays. Overall, the "dual" antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the "dual" antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo.