Melbourne Medical School Collected Works - Research Publications
Search
Search
Now showing items 1-12 of 499
WNT16 Influences Bone Mineral Density, Cortical Bone Thickness, Bone Strength, and Osteoporotic Fracture Risk
(PUBLIC LIBRARY SCIENCE, 2012-07-01)
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of -0.11 standard deviations [SD] per C allele, P = 6.2 × 10(-9)). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (-0.14 SD per C allele, P = 2.3 × 10(-12), and -0.16 SD per G allele, P = 1.2 × 10(-15), respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3 × 10(-9)), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9 × 10(-6) and rs2707466: OR = 1.22, P = 7.2 × 10(-6)). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16(-/-) mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%-61% (6.5 × 10(-13)<P<5.9 × 10(-4)) at both femur and tibia, compared with their wild-type littermates. Natural variation in humans and targeted disruption in mice demonstrate that WNT16 is an important determinant of CBT, BMD, bone strength, and risk of fracture.
Ca2+ regulates the Drosophila Stoned-A and Stoned-B proteins interaction with the C2B domain of Synaptotagmin-1.
(Public Library of Science (PLoS), 2012)
The dicistronic Drosophila stoned gene is involved in exocytosis and/or endocytosis of synaptic vesicles. Mutations in either stonedA or stonedB cause a severe disruption of neurotransmission in fruit flies. Previous studies have shown that the coiled-coil domain of the Stoned-A and the µ-homology domain of the Stoned-B protein can interact with the C2B domain of Synaptotagmin-1. However, very little is known about the mechanism of interaction between the Stoned proteins and the C2B domain of Synaptotagmin-1. Here we report that these interactions are increased in the presence of Ca(2+). The Ca(2+)-dependent interaction between the µ-homology domain of Stoned-B and C2B domain of Synaptotagmin-1 is affected by phospholipids. The C-terminal region of the C2B domain, including the tryptophan-containing motif, and the Ca(2+) binding loop region that modulate the Ca(2+)-dependent oligomerization, regulates the binding of the Stoned-A and Stoned-B proteins to the C2B domain. Stoned-B, but not Stoned-A, interacts with the Ca(2+)-binding loop region of C2B domain. The results indicate that Ca(2+)-induced self-association of the C2B domain regulates the binding of both Stoned-A and Stoned-B proteins to Synaptotagmin-1. The Stoned proteins may regulate sustainable neurotransmission in vivo by binding to Ca(2+)-bound Synaptotagmin-1 associated synaptic vesicles.
SPRING: an RCT study of probiotics in the prevention of gestational diabetes mellitus in overweight and obese women
(BMC, 2013-02-25)
BACKGROUND: Obesity is increasing in the child-bearing population as are the rates of gestational diabetes. Gestational diabetes is associated with higher rates of Cesarean Section for the mother and increased risks of macrosomia, higher body fat mass, respiratory distress and hypoglycemia for the infant. Prevention of gestational diabetes through life style intervention has proven to be difficult. A Finnish study showed that ingestion of specific probiotics altered the composition of the gut microbiome and thereby metabolism from early gestation and decreased rates of gestational diabetes in normal weight women. In SPRING (the Study of Probiotics IN the prevention of Gestational diabetes), the effectiveness of probiotics ingestion for the prevention of gestational diabetes will be assessed in overweight and obese women. METHODS/DESIGN: SPRING is a multi-center, prospective, double-blind randomized controlled trial run at two tertiary maternity hospitals in Brisbane, Australia. Five hundred and forty (540) women with a BMI > 25.0 kg/m(2) will be recruited over 2 years and receive either probiotics or placebo capsules from 16 weeks gestation until delivery. The probiotics capsules contain > 1x10(9) cfu each of Lactobacillus rhamnosus GG and Bifidobacterium lactis BB-12 per capsule. The primary outcome is diagnosis of gestational diabetes at 28 weeks gestation. Secondary outcomes include rates of other pregnancy complications, gestational weight gain, mode of delivery, change in gut microbiome, preterm birth, macrosomia, and infant body composition. The trial has 80% power at a 5% 2-sided significance level to detect a >50% change in the rates of gestational diabetes in this high-risk group of pregnant women. DISCUSSION: SPRING will show if probiotics can be used as an easily implementable method of preventing gestational diabetes in the high-risk group of overweight and obese pregnant women.
T cells fail to develop in the human skin-cell explants system; an inconvenient truth
(BMC, 2011-02-18)
BACKGROUND: Haplo-identical hematopoietic stem cell (HSC) transplantation is very successful in eradicating haematological tumours, but the long post-transplant T-lymphopenic phase is responsible for high morbidity and mortality rates. Clark et al. have described a skin-explant system capable of producing host-tolerant donor-HSC derived T-cells. Because this T-cell production platform has the potential to replenish the T-cell levels following transplantation, we set out to validate the skin-explant system. RESULTS: Following the published procedures, while using the same commercial components, it was impossible to reproduce the skin-explant conditions required for HSC differentiation towards mature T-cells. The keratinocyte maturation procedure resulted in fragile cells with minimum expression of delta-like ligand (DLL). In most experiments the generated cells failed to adhere to carriers or were quickly outcompeted by fibroblasts. Consequently it was not possible to reproduce cell-culture conditions required for HSC differentiation into functional T-cells. Using cell-lines over-expressing DLL, we showed that the antibodies used by Clark et al. were unable to detect native DLL, but instead stained 7AAD+ cells. Therefore, it is unlikely that the observed T-lineage commitment from HSC is mediated by DLL expressed on keratinocytes. In addition, we did confirm expression of the Notch-ligand Jagged-1 by keratinocytes. CONCLUSIONS: Currently, and unfortunately, it remains difficult to explain the development or growth of T-cells described by Clark et al., but for the fate of patients suffering from lymphopenia it is essential to both reproduce and understand how these co-cultures really "work". Fortunately, alternative procedures to speed-up T-cell reconstitution are being established and validated and may become available for patients in the near future.
A 46,XY Female DSD Patient with Bilateral Gonadoblastoma, a Novel SRY Missense Mutation Combined with a WT1 KTS Splice-Site Mutation
(PUBLIC LIBRARY SCIENCE, 2012-07-18)
Patients with Disorders of Sex Development (DSD), especially those with gonadal dysgenesis and hypovirilization are at risk of developing malignant type II germ cell tumors/cancer (GCC) (seminoma/dysgerminoma and nonseminoma), with either carcinoma in situ (CIS) or gonadoblastoma (GB) as precursor lesion. In 10-15% of 46,XY gonadal dysgenesis cases (i.e., Swyer syndrome), SRY mutations, residing in the HMG (High Mobility Group) domain, are found to affect nuclear transport or binding to and bending of DNA. Frasier syndrome (FS) is characterized by gonadal dysgenesis with a high risk for development of GB as well as chronic renal failure in early adulthood, and is known to arise from a splice site mutation in intron 9 of the Wilms' tumor 1 gene (WT1). Mutations in SRY as well as WT1 can lead to diminished expression and function of SRY, resulting in sub-optimal SOX9 expression, Sertoli cell formation and subsequent lack of proper testicular development. Embryonic germ cells residing in this unfavourable micro-environment have an increased risk for malignant transformation. Here a unique case of a phenotypically normal female (age 22 years) is reported, presenting with primary amenorrhoea, later diagnosed as hypergonadotropic hypogonadism on the basis of 46,XY gonadal dygenesis with a novel missense mutation in SRY. Functional in vitro studies showed no convincing protein malfunctioning. Laparoscopic examination revealed streak ovaries and a normal, but small, uterus. Pathological examination demonstrated bilateral GB and dysgerminoma, confirmed by immunohistochemistry. Occurrence of a delayed progressive kidney failure (focal segmental glomerular sclerosis) triggered analysis of WT1, revealing a pathogenic splice-site mutation in intron 9. Analysis of the SRY gene in an additional five FS cases did not reveal any mutations. The case presented shows the importance of multi-gene based diagnosis of DSD patients, allowing early diagnosis and treatment, thus preventing putative development of an invasive cancer.
Microparticles: major transport vehicles for distinct microRNAs in circulation
(OXFORD UNIV PRESS, 2012-03-15)
AIMS: Circulating microRNAs (miRNAs) have attracted major interest as biomarkers for cardiovascular diseases. Since RNases are abundant in circulating blood, there needs to be a mechanism protecting miRNAs from degradation. We hypothesized that microparticles (MP) represent protective transport vehicles for miRNAs and that these are specifically packaged by their maternal cells. METHODS AND RESULTS: Conventional plasma preparations, such as the ones used for biomarker detection, are shown to contain substantial numbers of platelet-, leucocyte-, and endothelial cell-derived MP. To analyse the widest spectrum of miRNAs, Next Generation Sequencing was used to assess miRNA profiles of MP and their corresponding stimulated and non-stimulated cells of origin. THP-1 (monocytic origin) and human umbilical vein endothelial cell (HUVEC) MP were used for representing circulating MP at a high purity. miRNA profiles of MP differed significantly from those of stimulated and non-stimulated maternal THP-1 cells and HUVECs, respectively. Quantitative reverse transcription-polymerase chain reaction of miRNAs which have been associated with cardiovascular diseases also demonstrated significant differences in miRNA profiles between platelets and their MP. Notably, the main fraction of miRNA in plasma was localized in MP. Furthermore, miRNA profiles of MP differed significantly between patients with stable and unstable coronary artery disease. CONCLUSION: Circulating MP represent transport vehicles for large numbers of specific miRNAs, which have been associated with cardiovascular diseases. miRNA profiles of MP are significantly different from their maternal cells, indicating an active mechanism of selective 'packaging' from cells into MP. These findings describe an interesting mechanism for transferring gene-regulatory function from MP-releasing cells to target cells via MP circulating in blood.
Gene expression profiling identifies activated growth factor signaling in poor prognosis (Luminal-B) estrogen receptor positive breast cancer
(BMC, 2009-06-24)
BACKGROUND: Within estrogen receptor-positive breast cancer (ER+ BC), the expression levels of proliferation-related genes can define two clinically distinct molecular subtypes. When treated with adjuvant tamoxifen, those ER+ BCs that are lowly proliferative have a good prognosis (luminal-A subtype), however the clinical outcome of those that are highly proliferative is poor (luminal-B subtype). METHODS: To investigate the biological basis for these observations, gene set enrichment analysis (GSEA) was performed using microarray data from 246 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. To create an in vitro model of growth factor (GF) signaling activation, MCF-7 cells were treated with heregulin (HRG), an HER3 ligand. RESULTS: We found that a gene set linked to GF signaling was significantly enriched in the luminal-B tumors, despite only 10% of samples over-expressing HER2 by immunohistochemistry. To determine the biological significance of this observation, MCF-7 cells were treated with HRG. These cells displayed phosphorylation of HER2/3 and downstream ERK and S6. Treatment with HRG overcame tamoxifen-induced cell cycle arrest with higher S-phase fraction and increased anchorage independent colony formation. Gene expression profiles of MCF-7 cells treated with HRG confirmed enrichment of the GF signaling gene set and a similar proliferative signature observed in human ER+ BCs resistant to tamoxifen. CONCLUSION: These data demonstrate that activation of GF signaling pathways, independent of HER2 over-expression, could be contributing to the poor prognosis of the luminal-B ER+ BC subtype.
Mitochondrial DNA copy number is regulated in a tissue specific manner by DNA methylation of the nuclear-encoded DNA polymerase gamma A
(OXFORD UNIV PRESS, 2012-11-01)
DNA methylation is an essential mechanism controlling gene expression during differentiation and development. We investigated the epigenetic regulation of the nuclear-encoded, mitochondrial DNA (mtDNA) polymerase γ catalytic subunit (PolgA) by examining the methylation status of a CpG island within exon 2 of PolgA. Bisulphite sequencing identified low methylation levels (<10%) within exon 2 of mouse oocytes, blastocysts and embryonic stem cells (ESCs), while somatic tissues contained significantly higher levels (>40%). In contrast, induced pluripotent stem (iPS) cells and somatic nuclear transfer ESCs were hypermethylated (>20%), indicating abnormal epigenetic reprogramming. Real time PCR analysis of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) immunoprecipitated DNA suggests active DNA methylation and demethylation within exon 2 of PolgA. Moreover, neural differentiation of ESCs promoted de novo methylation and demethylation at the exon 2 locus. Regression analysis demonstrates that cell-specific PolgA expression levels were negatively correlated with DNA methylation within exon 2 and mtDNA copy number. Finally, using chromatin immunoprecipitation (ChIP) against RNA polymerase II (RNApII) phosphorylated on serine 2, we show increased DNA methylation levels are associated with reduced RNApII transcriptional elongation. This is the first study linking nuclear DNA epigenetic regulation with mtDNA regulation during differentiation and cell specialization.
Dietary Patterns Are Associated with Cognition among Older People with Mild Cognitive Impairment
(MDPI, 2012-11-01)
There has been increasing interest in the influence of diet on cognition in the elderly. This study examined the cross-sectional association between dietary patterns and cognition in a sample of 249 people aged 65-90 years with mild cognitive impairment (MCI). Two dietary patterns; whole and processed food; were identified using factor analysis from a 107-item; self-completed Food Frequency Questionnaire. Logistic regression analyses showed that participants in the highest tertile of the processed food pattern score were more likely to have poorer cognitive functioning; in the lowest tertile of executive function (OR 2.55; 95% CI: 1.08-6.03); as assessed by the Cambridge Cognitive Examination. In a group of older people with MCI; a diet high in processed foods was associated with some level of cognitive impairment.
Glycemic Control Over 5 Years in 4,900 People With Type 2 Diabetes Real-world diabetes therapy in a clinical trial cohort
(AMER DIABETES ASSOC, 2012-05-01)
OBJECTIVE: Glycemic control in type 2 diabetes generally worsens over time, requiring intensification of therapy. The Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) trial provided the opportunity to observe glycemic control in a real-world setting. We assessed the adequacy of metformin, sulfonylureas, and insulin to maintain glycemic control and their effects on weight. RESEARCH DESIGN AND METHODS: Diabetes control was measured at baseline and yearly for a median of 5 years in the 4,900 patients from the nonintervention arm of this study allocated to placebo. RESULTS: Median HbA(1c) was 6.9% at baseline and increased by an average of 0.22% over 5 years (P < 0.001). Median weight was 86.3 kg at baseline and decreased by 0.4 kg over 5 years (P = 0.002). Baseline therapy was lifestyle measures only in 27%, oral agents without insulin in 59%, and insulin in 14% (7% also taking oral agents). Over 5 years, insulin use increased to 32% (21% also taking oral agents). Use of oral agents remained similar at 56%. Only 2% of patients at baseline and 4% after 5 years were taking oral agents other than metformin or sulfonylureas. Initiation of insulin therapy in 855 patients produced a sustained reduction of HbA(1c) from a median of 8.2 to 7.7%, with a weight gain of 4.6 kg over 5 years. CONCLUSIONS: With intensification of traditional therapies, glycemic control deteriorated very little over 5 years in a large cohort of type 2 diabetes. However, the requirement for insulin therapy doubled, at the expense of significant weight gain and risk of hypoglycemia.
A Cluster-Randomised Trial of Staff Education to Improve the Quality of Life of People with Dementia Living in Residential Care: The DIRECT Study
(PUBLIC LIBRARY SCIENCE, 2011-11-30)
BACKGROUND: The Dementia In Residential care: EduCation intervention Trial (DIRECT) was conducted to determine if delivery of education designed to meet the perceived need of GPs and care staff improves the quality of life of participants with dementia living in residential care. METHODOLOGY/PRINCIPAL FINDINGS: This cluster-randomised controlled trial was conducted in 39 residential aged care facilities in the metropolitan area of Perth, Western Australia. 351 care facility residents aged 65 years and older with Mini-Mental State Examination ≤ 24, their GPs and facility staff participated. Flexible education designed to meet the perceived needs of learners was delivered to GPs and care facility staff in intervention groups. The primary outcome of the study was self-rated quality of life of participants with dementia, measured using the QOL-Alzheimer's Disease Scale (QOL-AD) at 4 weeks and 6 months after the conclusion of the intervention. Analysis accounted for the effect of clustering by using multi-level regression analysis. Education of GPs or care facility staff did not affect the primary outcome at either 4 weeks or 6 months. In a post hoc analysis excluding facilities in which fewer than 50% of staff attended an education session, self-rated QOL-AD scores were 6.14 points (adjusted 95%CI 1.14, 11.15) higher at four-week follow-up among residents in facilities randomly assigned to the education intervention. CONCLUSION: The education intervention directed at care facilities or GPs did not improve the quality of life ratings of participants with dementia as a group. This may be explained by the poor adherence to the intervention programme, as participants with dementia living in facilities where staff participated at least minimally seemed to benefit. TRIAL REGISTRATION: ANZCTR.org.au ACTRN12607000417482.