Show simple item record

dc.contributor.authorLo, Jonathon
dc.date.accessioned2019-02-12T03:39:43Z
dc.date.available2019-02-12T03:39:43Z
dc.date.issued2019en_US
dc.identifier.urihttp://hdl.handle.net/11343/220587
dc.description© 2019 Dr Jonathon Lo
dc.description.abstractFor the last 30 years, cochlear implantation (CI) surgery has been successfully used for the treatment of severe to profound deafness. With improvements in cochlear implant technology, the surgical criteria have expanded to include patients with residual low frequency hearing. These patients can benefit from simultaneous use of the implant and a hearing aid in the same ear, termed electro-acoustic stimulation (EAS). EAS has been shown to be particularly beneficial for perceptual tasks relying on pitch resolution, such as music appreciation and speech perception in background noise (Gantz et al., 2005, Santa Maria et al., 2013). Unfortunately, residual hearing loss, termed post-implantation hearing loss, occurs in half of all patients, which degrades many of the benefits of EAS (Carlson et al., 2011). Post-implantation hearing loss may arise from direct surgical trauma and indirect damage to the cochlea (Eshraghi and Van de Water, 2006). The causes of direct trauma include surgical access to the cochlea and electrode insertion trauma. This results in several types of tissue injury, which may cause further hearing loss through a biological response, also termed indirect damage. However, the precise contributions of direct and indirect damage to post-implantation hearing loss remain indeterminate, in part, because of the lack of a standardised animal implantation model. Animal experimentations have been partly hampered by the difficult access to the mammalian inner ear and the absence of a consistent implantation technique (Rowe et al., 2016, Smeds et al., 2015, James et al., 2008) that has led to marked differences in the level of trauma and hearing loss (O'Leary et al., 2013, Farhadi et al., 2013, Honeder et al., 2015). The principal aim of this thesis was to examine the different types of cochlear trauma, how they relate to hearing loss and how hearing loss can be prevented. The issues that have been addressed here include cochlear anatomy and imaging techniques, pathology, pharmacology, electrophysiology and force recordings. This thesis begins by establishing a reproducible animal model of cochlear implantation surgery, followed by systematically examination the relevant contributors to surgical trauma and post-implantation hearing loss. From these findings, pharmacological therapy targeting the indirect damage and recording techniques to reduce post-implantation hearing loss have been investigated. An anatomical study of the guinea pig cochlea was initially performed using novel imaging and processing techniques. This study quantitatively described the soft and bony tissue relationships in the complex hook region of the unoperated guinea pig cochlea. A reproducible technique for implanting in an animal was established in this study for the remaining in vivo studies, including the use of a cochleostomy in an anteroinferior plane (highest predictability and smallest risk of trauma) and closer to the round window (lowest force profile). The first in vivo experiment of this thesis investigated the relative influence of implant insertion depth on trauma and hearing loss. This study also explored the use of glucocorticosteroids (‘steroids’) to preserve hearing and target the biological response to the implant. Key findings were that implants deeply inserted or in the presence of an osseous spiral lamina fracture caused the greatest low-frequency hearing loss. Steroids reduced the biological response in the most apical regions but had no effect on hearing thresholds. A second in vivo experiment was performed to further investigate the efficacy of steroids and to explore if trauma and hearing loss could be predicted at the time of surgery through force or electrocochleography recordings. Preserving the compound action potential of the electrocochleography recording was found to be predictive of an atraumatic insertion and reduced post-implantation hearing loss. Conversely, force was correlated with trauma but not hearing loss. Pre-operative steroids were effective in reversing the loss of hearing amplitudes evoked by lower frequency tones during implantation with hard electrodes. The results presented in this thesis will help inform the cochlear implant community of potential techniques to improve hearing preservation surgery. Specifically, these results provide a validated experimental model of hearing preservation surgery. These results also suggest a role for steroids in reducing tissue response and synaptopathy, and for electrocochleography as an intraoperative recording paradigm to reduce trauma and improve post-implantation hearing loss.en_US
dc.rightsTerms and Conditions: Copyright in works deposited in Minerva Access is retained by the copyright owner. The work may not be altered without permission from the copyright owner. Readers may only download, print and save electronic copies of whole works for their own personal non-commercial use. Any use that exceeds these limits requires permission from the copyright owner. Attribution is essential when quoting or paraphrasing from these works.
dc.subjectcochlear implanten_US
dc.subjectcochlear implantationen_US
dc.subjectdexamethasoneen_US
dc.subjectsteroidsen_US
dc.subjecthearing lossen_US
dc.subjectelectro-acoustic stimulationen_US
dc.subjecthearing preservation surgeryen_US
dc.subjecttraumaen_US
dc.subjectsurgical traumaen_US
dc.titleTrauma and residual hearing loss after cochlear implantation surgeryen_US
dc.typePhD thesisen_US
melbourne.affiliation.departmentOtolaryngology
melbourne.affiliation.facultyMedicine, Dentistry & Health Sciences
melbourne.affiliation.facultyMelbourne Medical School
melbourne.thesis.supervisornameO'Leary, Stephen
melbourne.contributor.authorLo, Jonathon
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record