- Surgery (RMH) - Research Publications
Surgery (RMH) - Research Publications
Permanent URI for this collection
963 results
Filters
Settings
Statistics
Citations
Search Results
Now showing
1 - 10 of 963
-
ItemRetinal ganglion cell-specific genetic regulation in primary open-angle glaucoma.Daniszewski, M ; Senabouth, A ; Liang, HH ; Han, X ; Lidgerwood, GE ; Hernández, D ; Sivakumaran, P ; Clarke, JE ; Lim, SY ; Lees, JG ; Rooney, L ; Gulluyan, L ; Souzeau, E ; Graham, SL ; Chan, C-L ; Nguyen, U ; Farbehi, N ; Gnanasambandapillai, V ; McCloy, RA ; Clarke, L ; Kearns, LS ; Mackey, DA ; Craig, JE ; MacGregor, S ; Powell, JE ; Pébay, A ; Hewitt, AW (Elsevier BV, 2022-06-08)To assess the transcriptomic profile of disease-specific cell populations, fibroblasts from patients with primary open-angle glaucoma (POAG) were reprogrammed into induced pluripotent stem cells (iPSCs) before being differentiated into retinal organoids and compared with those from healthy individuals. We performed single-cell RNA sequencing of a total of 247,520 cells and identified cluster-specific molecular signatures. Comparing the gene expression profile between cases and controls, we identified novel genetic associations for this blinding disease. Expression quantitative trait mapping identified a total of 4,443 significant loci across all cell types, 312 of which are specific to the retinal ganglion cell subpopulations, which ultimately degenerate in POAG. Transcriptome-wide association analysis identified genes at loci previously associated with POAG, and analysis, conditional on disease status, implicated 97 statistically significant retinal ganglion cell-specific expression quantitative trait loci. This work highlights the power of large-scale iPSC studies to uncover context-specific profiles for a genetically complex disease.
-
ItemHuman pluripotent stem cells for the modelling of retinal pigment epithelium homeostasis and disease: A reviewHall, JC ; Paull, D ; Pebay, A ; Lidgerwood, GE (WILEY, 2022-07-11)Human pluripotent stem cells (hPSCs), which include induced pluripotent stem cells and embryonic stem cells, are powerful tools for studying human development, physiology and disease, including those affecting the retina. Cells from selected individuals, or specific genetic backgrounds, can be differentiated into distinct cell types allowing the modelling of diseases in a dish for therapeutic development. hPSC-derived retinal cultures have already been used to successfully model retinal pigment epithelium (RPE) degeneration for various retinal diseases including monogenic conditions and complex disease such as age-related macular degeneration. Here, we will review the current knowledge gained in understanding the molecular events involved in retinal disease using hPSC-derived retinal models, in particular RPE models. We will provide examples of various conditions to illustrate the scope of applications associated with the use of hPSC-derived RPE models.
-
ItemMolecular Mechanisms Driving the Formation of Brain MetastasesCampbell, BK ; Gao, Z ; Corcoran, NM ; Stylli, SS ; Hovens, CM (MDPI, 2022-10-01)Targeted therapies for cancers have improved primary tumor response rates, but concomitantly, brain metastases (BM) have become the most common brain tumors in adults and are associated with a dismal prognosis of generally less than 6 months, irrespective of the primary cancer type. They most commonly occur in patients with primary breast, lung, or melanoma histologies; however, they also appear in patients with other primary cancers including, but not limited to, prostate cancer, colorectal cancer, and renal cell carcinoma. Historically, molecular biomarkers have normally been identified from primary tumor resections. However, clinically informative genomic alterations can occur during BM development and these potentially actionable alterations are not always detected in the primary tumor leading to missed opportunities for effective targeted therapy. The molecular mechanisms that facilitate and drive metastasis to the brain are poorly understood. Identifying the differences between the brain and other extracranial sties of metastasis, and between primary tumors and BM, is essential to improving our understanding of BM development and ultimately patient management and survival. In this review, we present the current data on the genomic landscape of BM from various primary cancers which metastasize to the brain and outline potential mechanisms which may play a role in promoting the formation of the distant metastases in the brain.
-
ItemA sporadic Alzheimer's blood-brain barrier model for developing ultrasound-mediated delivery of Aducanumab and anti-Tau antibodies.Wasielewska, JM ; Chaves, JCS ; Johnston, RL ; Milton, LA ; Hernández, D ; Chen, L ; Song, J ; Lee, W ; Leinenga, G ; Nisbet, RM ; Pébay, A ; Götz, J ; White, AR ; Oikari, LE (Ivyspring International Publisher, 2022)Rationale: The blood-brain barrier (BBB) is a major impediment to therapeutic intracranial drug delivery for the treatment of neurodegenerative diseases, including Alzheimer's disease (AD). Focused ultrasound applied together with microbubbles (FUS+MB) is a novel technique to transiently open the BBB and increase drug delivery. Evidence suggests that FUS+MB is safe, however, the effects of FUS+MB on human BBB cells, especially in the context of AD, remain sparsely investigated. In addition, there currently are no cell platforms to test for FUS+MB-mediated drug delivery. Methods: Here we generated BBB cells (induced brain endothelial-like cells (iBECs) and astrocytes (iAstrocytes)) from apolipoprotein E gene allele E4 (APOE4, high sporadic AD risk) and allele E3 (APOE3, lower AD risk) carrying patient-derived induced pluripotent stem cells (iPSCs). We established mono- and co-culture models of human sporadic AD and control BBB cells to investigate the effects of FUS+MB on BBB cell phenotype and to screen for the delivery of two potentially therapeutic AD antibodies, an Aducanumab-analogue (AduhelmTM; anti-amyloid-β) and a novel anti-Tau antibody, RNF5. We then developed a novel hydrogel-based 2.5D BBB model as a step towards a more physiologically relevant FUS+MB drug delivery platform. Results: When compared to untreated cells, the delivery of Aducanumab-analogue and RNF5 was significantly increased (up to 1.73 fold), across the Transwell-based BBB models following FUS+MB treatment. Our results also demonstrated the safety of FUS+MB indicated by minimal changes in iBEC transcriptome as well as little or no changes in iBEC or iAstrocyte viability and inflammatory responses within the first 24 h post FUS+MB. Furthermore, we demonstrated successful iBEC barrier formation in our novel 2.5D hydrogel-based BBB model with significantly increased delivery (1.4 fold) of Aducanumab-analogue following FUS+MB. Conclusion: Our results demonstrate a robust and reproducible approach to utilize patient cells for FUS+MB-mediated drug delivery screening in vitro. With such a cell platform for FUS+MB research previously not reported, it has the potential to identify novel FUS+MB-deliverable drugs as well as screen for cell- and patient-specific effects of FUS+MB, accelerating the use of FUS+MB as a therapeutic modality in AD.
-
ItemPerish and publish: Dynamics of biomedical publications by deceased authorsJung, C-HJ ; Boutros, PCM ; Park, DJM ; Corcoran, NMM ; Pope, BJM ; Hovens, CMM ; Wicherts, JM (PUBLIC LIBRARY SCIENCE, 2022-09-14)The question of whether it is appropriate to attribute authorship to deceased individuals of original studies in the biomedical literature is contentious. Authorship guidelines utilized by journals do not provide a clear consensus framework that is binding on those in the field. To guide and inform the implementation of authorship frameworks it would be useful to understand the extent of the practice in the scientific literature, but studies that have systematically quantified the prevalence of this phenomenon in the biomedical literature have not been performed to date. To address this issue, we quantified the prevalence of publications by deceased authors in the biomedical literature from the period 1990-2020. We screened 2,601,457 peer-reviewed papers from the full text Europe PubMed Central database. We applied natural language processing, stringent filtering and manual curation to identify a final set of 1,439 deceased authors. We then determined these authors published a total of 38,907 papers over their careers with 5,477 published after death. The number of deceased publications has been growing rapidly, a 146-fold increase since the year 2000. This rate of increase was still significant when accounting for the growing total number of publications and pool of authors. We found that more than 50% of deceased author papers were first submitted after the death of the author and that over 60% of these papers failed to acknowledge the deceased authors status. Most deceased authors published less than 10 papers after death but a small pool of 30 authors published significantly more. A pool of 266 authors published more than 90% of their total publications after death. Our analysis indicates that the attribution of deceased authorship in the literature is not an occasional occurrence but a burgeoning trend. A consensus framework to address authorship by deceased scientists is warranted.
-
ItemGlutamate weighted imaging contrast in gliomas with 7 Tesla magnetic resonance imagingNeal, A ; Moffat, BA ; Stein, JM ; Nanga, RPR ; Desmond, P ; Shinohara, RT ; Hariharan, H ; Glarin, R ; Drummond, K ; Morokoff, A ; Kwan, P ; Reddy, R ; O'Brien, TJ ; Davis, KA (ELSEVIER SCI LTD, 2019-01-01)INTRODUCTION: Diffuse gliomas are incurable malignancies, which undergo inevitable progression and are associated with seizure in 50-90% of cases. Glutamate has the potential to be an important glioma biomarker of survival and local epileptogenicity if it can be accurately quantified noninvasively. METHODS: We applied the glutamate-weighted imaging method GluCEST (glutamate chemical exchange saturation transfer) and single voxel MRS (magnetic resonance spectroscopy) at 7 Telsa (7 T) to patients with gliomas. GluCEST contrast and MRS metabolite concentrations were quantified within the tumour region and peritumoural rim. Clinical variables of tumour aggressiveness (prior adjuvant therapy and previous radiological progression) and epilepsy (any prior seizures, seizure in last month and drug refractory epilepsy) were correlated with respective glutamate concentrations. Images were separated into post-hoc determined patterns and clinical variables were compared across patterns. RESULTS: Ten adult patients with a histo-molecular (n = 9) or radiological (n = 1) diagnosis of grade II-III diffuse glioma were recruited, 40.3 +/- 12.3 years. Increased tumour GluCEST contrast was associated with prior adjuvant therapy (p = .001), and increased peritumoural GluCEST contrast was associated with both recent seizures (p = .038) and drug refractory epilepsy (p = .029). We distinguished two unique GluCEST contrast patterns with distinct clinical and radiological features. MRS glutamate correlated with GluCEST contrast within the peritumoural voxel (R = 0.89, p = .003) and a positive trend existed in the tumour voxel (R = 0.65, p = .113). CONCLUSION: This study supports the role of glutamate in diffuse glioma biology. It further implicates elevated peritumoural glutamate in epileptogenesis and altered tumour glutamate homeostasis in glioma aggressiveness. Given the ability to non-invasively visualise and quantify glutamate, our findings raise the prospect of 7 T GluCEST selecting patients for individualised therapies directed at the glutamate pathway. Larger studies with prospective follow-up are required.
-
ItemThe Interleukin-11/IL-11 Receptor Promotes Glioblastoma Survival and Invasion under Glucose-Starved Conditions through Enhanced GlutaminolysisStuart, SF ; Bezawork-Geleta, A ; Areeb, Z ; Gomez, J ; Tsui, V ; Zulkifli, A ; Paradiso, L ; Jones, J ; Nguyen, HPT ; Putoczki, TL ; Licciardi, PV ; Kannourakis, G ; Morokoff, AP ; Achuthan, AA ; Luwor, RB (MDPI, 2023-02-01)Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients. Glioblastoma cell lines over-expressing IL-11Rα displayed greater survival, proliferation, migration and invasion in glucose-free conditions compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα reversed these pro-tumorigenic characteristics. In addition, these IL-11Rα-over-expressing cells displayed enhanced glutamine oxidation and glutamate production compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα or the pharmacological inhibition of several members of the glutaminolysis pathway resulted in reduced survival (enhanced apoptosis) and reduced migration and invasion. Furthermore, IL-11Rα expression in glioblastoma patient samples correlated with enhanced gene expression of the glutaminolysis pathway genes GLUD1, GSS and c-Myc. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell survival and enhances cell migration and invasion in environments of glucose starvation via glutaminolysis.
-
ItemDoes early exercise attenuate muscle atrophy or bone loss after spinal cord injury?Panisset, MG ; Galea, MP ; El-Ansary, D (NATURE PUBLISHING GROUP, 2016-02-01)OBJECTIVES: To systematically identify and assess the evidence on the efficacy of exercise initiated early after traumatic spinal cord injury (SCI). METHODS: A comprehensive search (Any-2014) of eleven databases identified studies evaluating exercise interventions initiated within 12 weeks after SCI on muscle and bone loss in paralyzed limbs and comparing with standard care or immobilization. Two reviewers assessed methodological quality. One reviewer extracted data and critiqued results according to the Spinal Cord Injury Rehabilitation Evidence body of evidence framework. RESULTS: A total of 2811 titles were screened. Eleven studies were included: five randomized controlled trials, four cohort studies and two within-subject control studies. All provided level II evidence with a moderate risk of bias. Two studies found significant positive effects of high-load FES-resisted stance on physiological measures of muscle. Three reported positive effects of 3 months of Functional Electrical Stimulation (FES) on muscle size. Two studies found positive effects of 6-month body-weight supported treadmill training or FES on trabecular bone using pQCT. CONCLUSION: We found consistent evidence of positive effects of early exercise on muscle, possibly related to load intensity of the protocol. However, the heterogeneity of interventions and outcomes makes this determination speculative. Evidence for the effectiveness of early exercise on bone is scant and confined to measures of trabecular bone mineral density via pQCT. Transparent reporting of methods and variability of data, combined with standardization of valid and sensitive measures of muscle atrophy and bone loss, could facilitate future meta-analysis on this topic.
-
ItemFactors Associated with Long-Term Functional and Psychological Outcomes in Persons with Moderate to Severe Traumatic Brain InjuryKhan, F ; Amatya, B ; Judson, R ; Chung, P ; Truesdale, M ; Elmalik, A ; Galea, MP (Medical Journals Sweden, 2016-05-01)Objective: To examine factors impacting long-term functional and psychological outcomes in persons with moderate-severe traumatic brain injury. Methods: A prospective cross-sectional study (n = 103) assessed the long-term (up to 5 years) impact of traumatic brain injury on participants’ current activity and restriction in participation using validated questionnaires. Results: Participants’ median age was 49. 5 years (interquartile range (IQR) 20. 4–23. 8), the majority were male (77%), and 49% had some form of previous rehabilitation. The common causes of traumatic brain injury were falls (42%) and motor vehicle accidents (27%). Traumatic brain injury-related symptoms were: pain/headache (47%), dizziness (36%), bladder/bowel impairment (34%), and sensory-perceptual deficits (34%). Participants reported minimal change in their physical function and cognition (Functional Assessment Measure: motor (median 102, IQR 93–111) and cognition (median 89, IQR 78–95)). Participants were well-adjusted to community-living; however, they reported high levels of depression. Factors significantly associated with poorer current level of functioning/well-being included: older age (≥ 60 years), presence of traumatic brain injury-related symptoms, a lack of previous rehabilitation and those classified in “severe disability categories” at admission. Caregivers reported high levels of strain and burden (55%). Conclusion: Cognitive and psychosocial problems are more commonly reported than physical disability in the longer-term. A greater focus on participation and ageing with disability in these persons is needed.
-
ItemSCIPA Switch-On: A Randomized Controlled Trial Investigating the Efficacy and Safety of Functional Electrical Stimulation-Assisted Cycling and Passive Cycling Initiated Early After Traumatic Spinal Cord InjuryGalea, MP ; Panisset, MG ; El-Ansary, D ; Dunlop, SA ; Marshall, R ; Clark, JM ; Churilov, L (SAGE PUBLICATIONS INC, 2017-06-01)Background. Substantial skeletal muscle atrophy after spinal cord injury (SCI) carries significant repercussions for functional recovery and longer-term health. Objective. To compare the efficacy, safety, and feasibility of functional electrical stimulation-assisted cycling (FESC) and passive cycling (PC) to attenuate muscle atrophy after acute SCI. Methods. This multicenter, assessor-blinded phase I/II trial randomized participants at 4 weeks post-SCI to FESC or PC (4 sessions per week, 1 hour maximum per session, over 12 weeks). The primary outcome measure was mean maximum cross-sectional area (CSA) of thigh and calf muscles (magnetic resonance imaging), and secondary outcome measures comprised body composition (dual energy X-ray absorptiometry), anthropometry, quality of life, and adverse events (AEs). Results. Of 24 participants, 19 completed the 12-week trial (10 FESC, 9 PC, 18 male). Those participants completed >80% of training sessions (FESC, 83.5%; PC, 85.9%). No significant between-group difference in postintervention muscle CSA was found. No significant between-group difference was found for any other tissue, anthropometric parameter, or behavioral variable or AEs. Six participants experienced thigh hypertrophy (FESC = 3; PC = 3). Atrophy was attenuated (<30%) in 15 cases (FESC = 7; PC = 8). Conclusions. Both cycle ergometry regimens examined were safe, feasible, and well tolerated early after SCI. No conclusions regarding efficacy can be drawn from our data. Further investigation of both modalities early after SCI is required.