- Microbiology & Immunology - Research Publications
Microbiology & Immunology - Research Publications
Permanent URI for this collection
3702 results
Filters
Settings
Statistics
Citations
Search Results
Now showing
1 - 10 of 3702
-
ItemTransiently silent acquired antimicrobial resistance: an emerging challenge in susceptibility testingWagner, TM ; Howden, BP ; Sundsfjord, A ; Hegstad, K (OXFORD UNIV PRESS, 2023-01-31)Acquisition and expression of antimicrobial resistance (AMR) mechanisms in bacteria are often associated with a fitness cost. Thus, evolutionary adaptation and fitness cost compensation may support the advance of subpopulations with a silent resistance phenotype when the antibiotic selection pressure is absent. However, reports are emerging on the transient nature of silent acquired AMR, describing genetic alterations that can change the expression of these determinants to a clinically relevant level of resistance, and the association with breakthrough infections causing treatment failures. This phenomenon of transiently silent acquired AMR (tsaAMR) is likely to increase, considering the overall expansion of acquired AMR in bacterial pathogens. Moreover, the augmented use of genotypic methods in combination with conventional phenotypic antimicrobial susceptibility testing (AST) will increasingly enable the detection of genotype and phenotype discrepancy. This review defines tsaAMR as acquired antimicrobial resistance genes with a corresponding phenotype within the wild-type distribution or below the clinical breakpoint for susceptibility for which genetic alterations can mediate expression to a clinically relevant level of resistance. References to in vivo resistance development and therapeutic failures caused by selected resistant subpopulations of tsaAMR in Gram-positive and Gram-negative pathogens are given. We also describe the underlying molecular mechanisms, including alterations in the expression, reading frame or copy number of AMR determinants, and discuss the clinical relevance concerning challenges for conventional AST.
-
ItemSuppression of MR1 by human cytomegalovirus inhibits MAIT cell activationAshley, CL ; McSharry, BP ; McWilliam, HEG ; Stanton, RJ ; Fielding, CA ; Mathias, RA ; Fairlie, DP ; McCluskey, J ; Villadangos, JA ; Rossjohn, J ; Abendroth, A ; Slobedman, B (FRONTIERS MEDIA SA, 2023-02-10)INTRODUCTION: The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). METHODS: Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. RESULTS: Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. DISCUSSION: This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.
-
ItemImproved Genome Sequence of Australian Methicillin-Resistant Staphylococcus aureus Strain JKD6159Wick, RR ; Judd, LM ; Monk, IR ; Seemann, T ; Stinear, TP ; Newton, ILG (AMER SOC MICROBIOLOGY, 2023-01-18)Staphylococcus aureus strain JKD6159 represents a prominent community-acquired methicillin-resistant S. aureus (MRSA) clone in Australia. Here, we report an improved assembly of the original S. aureus JKD6159 genome sequence. By using deep sequencing with multiple technologies combined with carefully curated assembly and polishing, we believe the assembly to contain zero errors.
-
ItemProspective comprehensive profiling of immune responses to COVID-19 vaccination in patients on zanubrutinib therapy.Nguyen, THO ; Lim, C ; Lasica, M ; Whitechurch, A ; Tennakoon, S ; Saunders, NR ; Allen, LF ; Rowntree, LC ; Chua, BY ; Kedzierski, L ; Tan, H-X ; Wheatley, AK ; Kent, SJ ; Karapanagiotidis, T ; Nicholson, S ; Williamson, DA ; Slavin, MA ; Tam, CS ; Kedzierska, K ; Teh, BW (Wiley, 2023-02)Zanubrutinib-treated and treatment-naïve patients with chronic lymphocytic leukaemia (CLL) or Waldenstrom's macroglobulinaemia were recruited in this prospective study to comprehensively profile humoral and cellular immune responses to COVID-19 vaccination. Overall, 45 patients (median 72 years old) were recruited; the majority were male (71%), had CLL (76%) and were on zanubrutinib (78%). Seroconversion rates were 65% and 77% following two and three doses, respectively. CD4+ and CD8+ T-cell response rates increased with third dose. In zanubrutinib-treated patients, 86% developed either a humoral or cellular response. Patients on zanubrutinib developed substantial immune responses following two COVID-19 vaccine doses, which further improved following a third dose.
-
ItemHidden Resistances: How Routine Whole-Genome Sequencing Uncovered an Otherwise Undetected bla(NDM-1) Gene in Vibrio alginolyticus from Imported SeafoodMorris, JMM ; Mercoulia, K ; Valcanis, M ; Gorrie, CLL ; Sherry, NLL ; Howden, BPP ; Andam, CP (AMER SOC MICROBIOLOGY, 2023-01-05)Vibrio alginolyticus causes vibriosis of marine vertebrates, invertebrates, and humans, and while there have been several reports of multidrug resistance in V. alginolyticus, carbapenem resistance is rare. V. alginolyticus strain AUSMDU00064140 was isolated in Melbourne, Australia, from imported prawns. Routine genomic surveillance detected the presence of a full-length blaNDM-1 gene, subsequently shown to be collocated with additional acquired antimicrobial resistance genes on a resistance cassette on the largest chromosome, flanked by mobilization gene annotations. Comparisons to a previously described V. alginolyticus plasmid, pC1349, revealed differing gene content and arrangements between the resistance cassettes. Phylogenetic analysis was performed against a local and global data set (n = 109), demonstrating that AUSMDU00064140 was distinct and did not cluster with any other strains. Despite the presence of the complete blaNDM-1 gene and positive phenotypic assays for carbapenemase production, carbapenem MICs were low (meropenem MIC ≤0.5 mg/liter). However, it is still possible that this gene may be transferred to another species in the environment or a host, causing phenotypic carbapenem resistance and presenting a risk of great public health concern. IMPORTANCE Carbapenems are last-line antimicrobials, vital for use in human medicine. Antimicrobial resistance determinants such as blaNDM (New Delhi metallo-β-lactamase producing) genes conferring resistance to the carbapenem class of antimicrobials, are typically found in Enterobacterales (first described in 2009 from a Klebsiella pneumoniae isolate). Our study shows that Vibrio alginolyticus isolated from cooked prawn is able to harbor antimicrobial resistance (AMR) genes of public health concern, specifically a chromosomally located blaNDM-1 gene, and there is the potential for transmission of resistance genes. This may be linked with antimicrobial use in low- and middle-income settings, which has typically been high, unregulated, or not reported. Many countries, including Thailand, have implemented national strategic plans to incorporate the World Health Organization (WHO)'s Global Action Plan (2015) recommendations of a global One Health approach, including increased resources for surveillance of antimicrobial usage and AMR; however, efficient antimicrobial surveillance systems incorporating genomic and phenotypic testing of isolates are still lacking in many jurisdictions.
-
ItemRIPK3 controls MAIT cell accumulation during development but not during infectionPatton, T ; Zhao, Z ; Lim, XY ; Eddy, E ; Wang, H ; Nelson, AG ; Ennis, B ; Eckle, SBG ; Souter, MNT ; Pediongco, TJ ; Koay, H-F ; Zhang, J-G ; Djajawi, TM ; Louis, C ; Lalaoui, N ; Jacquelot, N ; Lew, AM ; Pellicci, DG ; McCluskey, J ; Zhan, Y ; Chen, Z ; Lawlor, KE ; Corbett, AJ (SPRINGERNATURE, 2023-02-11)Cell death mechanisms in T lymphocytes vary according to their developmental stage, cell subset and activation status. The cell death control mechanisms of mucosal-associated invariant T (MAIT) cells, a specialized T cell population, are largely unknown. Here we report that MAIT cells express key necroptotic machinery; receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) protein, in abundance. Despite this, we discovered that the loss of RIPK3, but not necroptotic effector MLKL or apoptotic caspase-8, specifically increased MAIT cell abundance at steady-state in the thymus, spleen, liver and lungs, in a cell-intrinsic manner. In contrast, over the course of infection with Francisella tularensis, RIPK3 deficiency did not impact the magnitude of the expansion nor contraction of MAIT cell pools. These findings suggest that, distinct from conventional T cells, the accumulation of MAIT cells is restrained by RIPK3 signalling, likely prior to thymic egress, in a manner independent of canonical apoptotic and necroptotic cell death pathways.
-
ItemEvolutionary rate of SARS-CoV-2 increases during zoonotic infection of farmed minkPorter, AF ; Purcell, DFJ ; Howden, BP ; Duchene, S (OXFORD UNIV PRESS, 2023-02-03)To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 × 10-3 and 1.05 × 10-2 (95 per cent HPD, with a mean rate of 6.59 × 10-3) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.
-
ItemT follicular helper 17 (Tfh17) cells are superior for immunological memory maintenanceGao, X ; Luo, K ; Wang, D ; Wei, Y ; Yao, Y ; Deng, J ; Yang, Y ; Zeng, Q ; Dong, X ; Xiong, L ; Gong, D ; Lin, L ; Pohl, K ; Liu, S ; Liu, Y ; Liu, L ; Nguyen, THO ; Allen, LF ; Kedzierska, K ; Jin, Y ; Du, M-R ; Chen, W ; Lu, L ; Shen, N ; Liu, Z ; Cockburn, IA ; Luo, W ; Yu, D (eLIFE SCIENCES PUBL LTD, 2023-01-19)A defining feature of successful vaccination is the ability to induce long-lived antigen-specific memory cells. T follicular helper (Tfh) cells specialize in providing help to B cells in mounting protective humoral immunity in infection and after vaccination. Memory Tfh cells that retain the CXCR5 expression can confer protection through enhancing humoral response upon antigen re-exposure but how they are maintained is poorly understood. CXCR5+ memory Tfh cells in human blood are divided into Tfh1, Tfh2, and Tfh17 cells by the expression of chemokine receptors CXCR3 and CCR6 associated with Th1 and Th17, respectively. Here, we developed a new method to induce Tfh1, Tfh2, and Tfh17-like (iTfh1, iTfh2, and iTfh17) mouse cells in vitro. Although all three iTfh subsets efficiently support antibody responses in recipient mice with immediate immunization, iTfh17 cells are superior to iTfh1 and iTfh2 cells in supporting antibody response to a later immunization after extended resting in vivo to mimic memory maintenance. Notably, the counterpart human Tfh17 cells are selectively enriched in CCR7+ central memory Tfh cells with survival and proliferative advantages. Furthermore, the analysis of multiple human cohorts that received different vaccines for HBV, influenza virus, tetanus toxin or measles revealed that vaccine-specific Tfh17 cells outcompete Tfh1 or Tfh2 cells for the persistence in memory phase. Therefore, the complementary mouse and human results showing the advantage of Tfh17 cells in maintenance and memory function supports the notion that Tfh17-induced immunization might be preferable in vaccine development to confer long-term protection.
-
ItemCorrelates of Protection, Thresholds of Protection, and Immunobridging among Persons with SARS-CoV-2 InfectionKhoury, DS ; Schlub, TE ; Cromer, D ; Steain, M ; Fong, Y ; Gilbert, PB ; Subbarao, K ; Triccas, JA ; Kent, SJ ; Davenport, MP (CENTERS DISEASE CONTROL & PREVENTION, 2023-02-01)Several studies have shown that neutralizing antibody levels correlate with immune protection from COVID-19 and have estimated the relationship between neutralizing antibodies and protection. However, results of these studies vary in terms of estimates of the level of neutralizing antibodies required for protection. By normalizing antibody titers, we found that study results converge on a consistent relationship between antibody levels and protection from COVID-19. This finding can be useful for planning future vaccine use, determining population immunity, and reducing the global effects of the COVID-19 pandemic.
-
ItemA high-dimensional cytometry atlas of peripheral blood over the human life spanJalali, S ; Harpur, CM ; Piers, AT ; Auladell, M ; Perriman, L ; Li, S ; An, K ; Anderson, J ; Berzins, SP ; Licciardi, P ; Ashhurst, TM ; Konstantinov, IE ; Pellicci, DG (WILEY, 2022-11-06)Age can profoundly affect susceptibility to a broad range of human diseases. Children are more susceptible to some infectious diseases such as diphtheria and pertussis, while in others, such as coronavirus disease 2019 and hepatitis A, they are more protected compared with adults. One explanation is that the composition of the immune system is a major contributing factor to disease susceptibility and severity. While most studies of the human immune system have focused on adults, how the immune system changes after birth remains poorly understood. Here, using high-dimensional spectral flow cytometry and computational methods for data integration, we analyzed more than 50 populations of immune cells in the peripheral blood, generating an immune cell atlas that defines the healthy human immune system from birth up to 75 years of age. We focused our efforts on children under 18 years old, revealing major changes in immune cell populations after birth and in children of schooling age. Specifically, CD4+ T effector memory cells, Vδ2+ gamma delta (γδ)T cells, memory B cells, plasmablasts, CD11c+ B cells and CD16+ CD56bright natural killer (NK) cells peaked in children aged 5-9 years old, whereas frequencies of T helper 1, T helper 17, dendritic cells and CD16+ CD57+ CD56dim NK cells were highest in older children (10-18 years old). The frequency of mucosal-associated invariant T cells was low in the first several years of life and highest in adults between 19 and 30 years old. Late adulthood was associated with fewer mucosal-associated invariant T cells and Vδ2+ γδ T cells but with increased frequencies of memory subsets of B cells, CD4+ and CD8+ T cells and CD57+ NK cells. This human immune cell atlas provides a critical resource to understand changes to the immune system during life and provides a reference for investigating the immune system in the context of human disease. This work may also help guide future therapies that target specific populations of immune cells to protect at-risk populations.