University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Engineering and Information Technology
  • Computing and Information Systems
  • Computing and Information Systems - Theses
  • View Item
  • Minerva Access
  • Engineering and Information Technology
  • Computing and Information Systems
  • Computing and Information Systems - Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Data quality and quantity in mobile experience sampling

    Thumbnail
    Download
    Final thesis file (10.36Mb)

    Citations
    Altmetric
    Author
    van Berkel, Niels
    Date
    2019
    Affiliation
    Computing and Information Systems
    Metadata
    Show full item record
    Document Type
    PhD thesis
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/227682
    Description

    © 2019 Niels van Berkel

    Abstract
    The widespread availability of technologically-advanced mobile devices has brought researchers the opportunity to observe human life in day-to-day circumstances. Rather than studying human behaviour through extensive surveys or in artificial laboratory situations, this research instrument allows us to systematically capture human life in naturalistic settings. Mobile devices can capture two distinct data streams. First, the data from sensors embedded within these devices can be appropriated to construct the context of study participants. Second, participants can be asked to actively and repeatedly provide data on phenomena which cannot be reliably collected using the aforementioned sensor streams. This method is known as Experience Sampling. Researchers employing this method ask participants to provide observations multiple times per day, across a range of contexts, and to reflect on current rather than past experiences. This approach brings a number of advantages over existing methods, such as the ability to observe shifts in participant experiences over time and context, and reducing reliance on the participant’s ability to accurately recall past events. As the onus of data collection lies with participants rather researchers, there is a firm reliance on the reliability of participant contributions. While previous work has focused on increasing the number of participant contributions, the quality of these contributions has remained relatively unexplored. This thesis focuses on improving the quality and quantity of participant data collected through mobile Experience Sampling. Assessing and subsequently improving the quality of participant responses is a crucial step towards increasing the reliability of this increasingly popular data collection method. Previous recommendations for researchers are based primarily on anecdotal evidence or personal experience in running Experience Sampling studies. While such insights are valuable, it is challenging to replicate these recommendations and quantify their effect. Furthermore, we evaluate the application of this method in light of recent developments in mobile devices. The opportunities and challenges introduced by smartphone-based Experience Sampling studies remain underexplored in the current literature. Such devices can be utilised to infer participants’ context and optimise questionnaire scheduling and presentation to increase data quality and quantity. By deploying our studies on these devices, we explore the opportunities of mobile sensing and interaction in the context of mobile Experience Sampling studies. Our findings illustrate the feasibility of assessing and quantifying participant accuracy through the use of peer assessment, ground truth questions, and the assessment of cognitive skills. We empirically evaluate these approaches across a variety of study goals. Furthermore, our results provide recommendations on study design, motivation and data collection practices, and appropriate analysis techniques of participant data concerning response accuracy. Researchers can use our findings to increase the reliability of their data, to collect participant responses more evenly across different contexts in order to reduce the potential for bias, and to increase the total number of collected responses. The goal of this thesis is to improve the collection of human-labelled data in ESM studies, thereby strengthening the role of smartphones as valuable scientific instruments. Our work reveals a clear opportunity in the combination of human and sensor data sensing techniques for researchers interested in studying human behaviour in situ.
    Keywords
    experience sampling; experience sampling method; ESM; ecological momentary assessment; EMA; self-report; smartphone; mobile sensing; mobile questionnaires; data quality; validation; data quantity; mobile crowdsourcing; methodology

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [52694]
    • Computing and Information Systems - Theses [405]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors