University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Science
  • School of Ecosystem and Forest Sciences
  • School of Ecosystem and Forest Sciences - Research Publications
  • View Item
  • Minerva Access
  • Science
  • School of Ecosystem and Forest Sciences
  • School of Ecosystem and Forest Sciences - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Catchment-scale urbanization diminishes effects of habitat complexity on instream macroinvertebrate assemblages

    Thumbnail
    Download
    Accepted version (14.94Mb)

    Citations
    Altmetric
    Author
    White, JY; Walsh, CJ
    Date
    2020-07-20
    Source Title
    Ecological Applications
    Publisher
    WILEY
    University of Melbourne Author/s
    Walsh, Christopher
    Affiliation
    School of Ecosystem and Forest Sciences
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    White, J. Y. & Walsh, C. J. (2020). Catchment-scale urbanization diminishes effects of habitat complexity on instream macroinvertebrate assemblages. ECOLOGICAL APPLICATIONS, 30 (8), https://doi.org/10.1002/eap.2199.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/241874
    DOI
    10.1002/eap.2199
    ARC Grant code
    ARC/LP0883610
    Abstract
    While provision of in-stream habitat complexity remains common practice in efforts to restore streams, the evidence of positive effects on in-stream communities is inconsistent. In streams of urban catchments, where both reach-scale habitat manipulation and catchment-scale actions to ameliorate the disturbance regime of urban stormwater runoff are common management responses, clearer understanding of the effects of habitat complexity under different degrees of urban impact are needed. We experimentally assessed the effect of increased surface complexity in wood, the dominant hard substrate in our 18 study reaches on 14 small streams, on in-stream macroinvertebrate assemblages across a range of urban impact. Increased surface complexity increased abundance of most taxa, but this effect was less pronounced in urban streams, partly because of the reduced species pool tolerant of urban stormwater impacts, and partly because of a lesser response of some species to increased complexity in more urban streams. Collectively these taxon-specific effects resulted in small, uncertain increases in taxon richness with increased complexity in rural streams, and no change in richness of the less diverse assemblages of urban streams. Increased abundances suggest increased availability of refugia or resources with increased surface complexity, while the reduced effect of complexity in urban streams suggests that any refuge or resource provided by greater surface complexity is less effective in more disturbed environments receiving urban stormwater runoff. The reduced abundance of sensitive taxa in more urban streams, and the resultant reduced richness, confirms that urban stormwater runoff acts as a strong environmental filter, limiting the species pool available for community assembly. Restoration of habitat complexity in streams without catchment-scale drivers of degradation is likely to have positive benefits to in-stream biotic assemblages, but the efficacy of such approaches in catchments subject to urban stormwater runoff will be greatly diminished. In such cases, restoration activities should first be aimed at controlling the larger-scale problem.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45689]
    • School of Ecosystem and Forest Sciences - Research Publications [265]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors