The 9-Fluorenylmethoxycarbonyl (Fmoc) Group in Chemical Peptide Synthesis - Its Past, Present, and Future

Download
Author
Li, W; O'Brien-Simpson, NM; Hossain, MA; Wade, JDDate
2020-01-01Source Title
Australian Journal of Chemistry: an international journal for chemical sciencePublisher
CSIRO PUBLISHINGAffiliation
Melbourne Dental SchoolFlorey Department of Neuroscience and Mental Health
Metadata
Show full item recordDocument Type
Journal ArticleCitations
Li, W., O'Brien-Simpson, N. M., Hossain, M. A. & Wade, J. D. (2020). The 9-Fluorenylmethoxycarbonyl (Fmoc) Group in Chemical Peptide Synthesis - Its Past, Present, and Future. AUSTRALIAN JOURNAL OF CHEMISTRY, 73 (4), pp.271-276. https://doi.org/10.1071/CH19427.Access Status
Open AccessDOI
10.1071/CH19427Abstract
<jats:p>
The chemical formation of the peptide bond has long fascinated and challenged organic chemists. It requires not only the activation of the carboxyl group of an amino acid but also the protection of the Nα-amino group. The more than a century of continuous development of ever-improved protecting group chemistry has been married to dramatic advances in the chemical synthesis of peptides that, itself, was substantially enhanced by the development of solid-phase peptide synthesis by R. B. Merrifield in the 1960s. While the latter technology has continued to undergo further refinement and improvement in both its chemistry and automation, the development of the base-labile 9-fluorenylmethoxycarbonyl (Fmoc) group and its integration into current synthesis methods is considered a major landmark in the history of the chemical synthesis of peptides. The many beneficial attributes of the Fmoc group, which have yet to be surpassed by any other Nα-protecting group, allow very rapid and highly efficient synthesis of peptides, including ones of significant size and complexity, making it an even more valuable resource for research in the post-genomic world. This review charts the development and use of this Nα-protecting group and its adaptation to address the need for more green chemical peptide synthesis processes.
</jats:p>
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References