Photo- and Collision-Induced Isomerization of a Charge-Tagged Norbornadiene-Quadricyclane System

Download
Citations
Altmetric
Author
Jacovella, U; Carrascosa, E; Buntine, JT; Ree, N; Mikkelsen, K; Jevric, M; Moth-Poulsen, K; Bieske, EJDate
2020-08-06Source Title
Journal of Physical Chemistry LettersPublisher
AMER CHEMICAL SOCAffiliation
School of ChemistryMetadata
Show full item recordDocument Type
Journal ArticleCitations
Jacovella, U., Carrascosa, E., Buntine, J. T., Ree, N., Mikkelsen, K., Jevric, M., Moth-Poulsen, K. & Bieske, E. J. (2020). Photo- and Collision-Induced Isomerization of a Charge-Tagged Norbornadiene-Quadricyclane System. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 11 (15), pp.6045-6050. https://doi.org/10.1021/acs.jpclett.0c01198.Access Status
Open AccessAbstract
Molecular photoswitches based on the norbornadiene–quadricylane (NBD–QC) couple have been proposed as key elements of molecular solar thermal energy storage schemes. To characterize the intrinsic properties of such systems, reversible isomerization of a charge-tagged NBD–QC carboxylate couple is investigated in a tandem ion mobility mass spectrometer, using light to induce intramolecular [2 + 2] cycloaddition of NBD carboxylate to form the QC carboxylate and driving the back reaction with molecular collisions. The NBD carboxylate photoisomerization action spectrum recorded by monitoring the QC carboxylate photoisomer extends from 290 to 360 nm with a maximum at 315 nm, and in the longer wavelength region resembles the NBD carboxylate absorption spectrum recorded in solution. Key structural and photochemical properties of the NBD–QC carboxylate system, including the gas-phase absorption spectrum and the energy storage capacity, are determined through computational studies using density functional theory.
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References