Show simple item record

dc.contributor.authorNgo, HB
dc.contributor.authorMelo, MR
dc.contributor.authorLayfield, S
dc.contributor.authorConnelly, AA
dc.contributor.authorBassi, JK
dc.contributor.authorXie, L
dc.contributor.authorMenuet, C
dc.contributor.authorMcDougall, SJ
dc.contributor.authorBathgate, RAD
dc.contributor.authorAllen, AM
dc.date.accessioned2020-11-27T00:43:46Z
dc.date.available2020-11-27T00:43:46Z
dc.date.issued2020-09-15
dc.identifierpii: S2211-1247(20)31128-1
dc.identifier.citationNgo, H. B., Melo, M. R., Layfield, S., Connelly, A. A., Bassi, J. K., Xie, L., Menuet, C., McDougall, S. J., Bathgate, R. A. D. & Allen, A. M. (2020). A Chemogenetic Tool that Enables Functional Neural Circuit Analysis. CELL REPORTS, 32 (11), https://doi.org/10.1016/j.celrep.2020.108139.
dc.identifier.issn2211-1247
dc.identifier.urihttp://hdl.handle.net/11343/252570
dc.description.abstractChemogenetics enables manipulation of neuronal activity in experimental animals. While providing information about the transduced neuron expressing a ligand-activated molecule, chemogenetics does not provide understanding about the antecedent circuit that drives that neuron's activity. For current approaches, this is not feasible, because the activating molecules are not genetically encoded. The insect allatostatin/allatostatin receptor system, a highly specific, powerful inhibitory chemogenetic approach, has this advantage, because the ligand, being a peptide, is genetically encoded. We developed viral vector-based systems to express biologically active allatostatin in neurons in vivo and allatostatin receptors in subpopulations of postsynaptic neurons. We demonstrate that activity-dependent release of allatostatin induces inhibition of allatostatin receptor-expressing neurons. We validate the approach in the vagal viscerosensory system where inhibitory, rather than the usual excitatory, viscerosensory input leads to sustained decreases in baroreceptor reflex sensitivity and bodyweight.
dc.languageEnglish
dc.publisherCELL PRESS
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.titleA Chemogenetic Tool that Enables Functional Neural Circuit Analysis
dc.typeJournal Article
dc.identifier.doi10.1016/j.celrep.2020.108139
melbourne.affiliation.departmentFlorey Department of Neuroscience and Mental Health
melbourne.affiliation.departmentPhysiology
melbourne.source.titleCell Reports
melbourne.source.volume32
melbourne.source.issue11
melbourne.identifier.nhmrc1102477
melbourne.identifier.nhmrc1156727
melbourne.identifier.arcDP170104582
dc.rights.licensecc-by-nc-nd
melbourne.elementsid1465791
melbourne.contributor.authorDel Rosso De Melo, Mariana
melbourne.contributor.authorAllen, Andrew
melbourne.contributor.authorBassi, Jaspreet
melbourne.contributor.authorHuf, Angela
melbourne.contributor.authorBathgate, Ross
melbourne.contributor.authorMcDougall, Stuart
melbourne.contributor.authorLayfield, Sharon
melbourne.contributor.authorNgo, Hoai Buu
dc.identifier.eissn2211-1247
melbourne.identifier.fundernameidNHMRC, 1102477
melbourne.identifier.fundernameidNHMRC, 1156727
melbourne.identifier.fundernameidAustralian Research Council, DP170104582
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record