Show simple item record

dc.contributor.authorVoisin, B
dc.contributor.authorBocquel, J
dc.contributor.authorTankasala, A
dc.contributor.authorUsman, M
dc.contributor.authorSalfi, J
dc.contributor.authorRahman, R
dc.contributor.authorSimmons, MY
dc.contributor.authorHollenberg, LCL
dc.contributor.authorRogge, S
dc.date.accessioned2020-12-03T03:51:44Z
dc.date.available2020-12-03T03:51:44Z
dc.date.issued2020-11-30
dc.identifierpii: 10.1038/s41467-020-19835-1
dc.identifier.citationVoisin, B., Bocquel, J., Tankasala, A., Usman, M., Salfi, J., Rahman, R., Simmons, M. Y., Hollenberg, L. C. L. & Rogge, S. (2020). Valley interference and spin exchange at the atomic scale in silicon. Nature Communications, 11 (1), https://doi.org/10.1038/s41467-020-19835-1.
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/11343/252763
dc.description.abstractTunneling is a fundamental quantum process with no classical equivalent, which can compete with Coulomb interactions to give rise to complex phenomena. Phosphorus dopants in silicon can be placed with atomic precision to address the different regimes arising from this competition. However, they exploit wavefunctions relying on crystal band symmetries, which tunneling interactions are inherently sensitive to. Here we directly image lattice-aperiodic valley interference between coupled atoms in silicon using scanning tunneling microscopy. Our atomistic analysis unveils the role of envelope anisotropy, valley interference and dopant placement on the Heisenberg spin exchange interaction. We find that the exchange can become immune to valley interference by engineering in-plane dopant placement along specific crystallographic directions. A vacuum-like behaviour is recovered, where the exchange is maximised to the overlap between the donor orbitals, and pair-to-pair variations limited to a factor of less than 10 considering the accuracy in dopant positioning. This robustness remains over a large range of distances, from the strongly Coulomb interacting regime relevant for high-fidelity quantum computation to strongly coupled donor arrays of interest for quantum simulation in silicon.
dc.languageen
dc.publisherNature Research
dc.rights.urihttps://creativecommons.org/licenses/by/4.0
dc.titleValley interference and spin exchange at the atomic scale in silicon
dc.typeJournal Article
dc.identifier.doi10.1038/s41467-020-19835-1
melbourne.affiliation.departmentComputing and Information Systems
melbourne.affiliation.departmentSchool of Physics
melbourne.source.titleNature Communications
melbourne.source.volume11
melbourne.source.issue1
melbourne.source.pages6124-
dc.rights.licenseCC BY
melbourne.elementsid1481778
melbourne.openaccess.urlhttps://doi.org/10.1038/s41467-020-19835-1
melbourne.openaccess.pmchttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC7705737
melbourne.openaccess.statusPublished version
melbourne.contributor.authorUsman, Muhammad
melbourne.contributor.authorHollenberg, Lloyd
dc.identifier.eissn2041-1723
melbourne.identifier.fundernameidUNIVERSITY OF NEW SOUTH WALES, CE170100012
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record