Similarity and structure of wall turbulence with lateral wall shear stress variations

Download
Author
Chung, D; Monty, JP; Hutchins, NDate
2018-07-25Source Title
Journal of Fluid MechanicsPublisher
Cambridge University Press (CUP)Affiliation
Mechanical EngineeringMetadata
Show full item recordDocument Type
Journal ArticleCitations
Chung, D., Monty, J. P. & Hutchins, N. (2018). Similarity and structure of wall turbulence with lateral wall shear stress variations. Journal of Fluid Mechanics, 847, pp.591-613. https://doi.org/10.1017/jfm.2018.336.Access Status
Open AccessARC Grant code
ARC/DP160102279Abstract
Wall-bounded turbulence, where it occurs in engineering or nature, is commonly subjected to spatial variations in wall shear stress. A prime example is spatially varying roughness. Here, we investigate the configuration where the wall shear stress varies only in the lateral direction. The investigation is idealised in order to focus on one aspect, namely, the similarity and structure of turbulent inertial motion over an imposed scale of stress variation. To this end, we analyse data from direct numerical simulation (DNS) of pressure-driven turbulent flow through a channel bounded by walls of laterally alternating patches of high and low wall shear stress. The wall shear stress is imposed as a Neumann boundary condition such that the wall shear stress ratio is fixed at 3 while the lateral spacing s of the uniform-stress patches is varied from 0.39 to 6.28 of the half-channel height 𝛿 . We find that global outer-layer similarity is maintained when s is less than approximately 0.39𝛿 while local outer-layer similarity is recovered when s is greater than approximately 6.28𝛿 . However, the transition between the two regimes through s≈𝛿 is not monotonic owing to the presence of secondary roll motions that extend across the whole cross-section of the flow. Importantly, these secondary roll motions are associated with an amplified skin-friction coefficient relative to both the small- and large- s/𝛿 limits. It is found that the relationship between the secondary roll motions and the mean isovels is reversed through this transition from low longitudinal velocity over low stress at small s/𝛿 to high longitudinal velocity over low stress at large s/𝛿 .
Export Reference in RIS Format
Endnote
- Click on "Export Reference in RIS Format" and choose "open with... Endnote".
Refworks
- Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References