Show simple item record

dc.contributor.authorWright, DK
dc.contributor.authorO'Brien, TJ
dc.contributor.authorMychasiuk, R
dc.contributor.authorShultz, SR
dc.date.accessioned2020-12-09T23:19:42Z
dc.date.available2020-12-09T23:19:42Z
dc.date.issued2018-01-01
dc.identifierpii: S2213-1582(18)30033-0
dc.identifier.citationWright, D. K., O'Brien, T. J., Mychasiuk, R. & Shultz, S. R. (2018). Telomere length and advanced diffusion MRI as biomarkers for repetitive mild traumatic brain injury in adolescent rats. NEUROIMAGE-CLINICAL, 18, pp.315-324. https://doi.org/10.1016/j.nicl.2018.01.033.
dc.identifier.issn2213-1582
dc.identifier.urihttp://hdl.handle.net/11343/253193
dc.description.abstractMild traumatic brain injuries (mTBI) are of worldwide concern in adolescents of both sexes, and repeated mTBI (RmTBI) may have serious long-term neurological consequences. As such, the study of RmTBI and discovery of objective biomarkers that can help guide medical decisions is an important undertaking. Diffusion-weighted MRI (DWI), which provides markers of axonal injury, and telomere length (TL) are two clinically relevant biomarkers that have been implicated in a number of neurological conditions, and may also be affected by RmTBI. Therefore, this study utilized the lateral impact injury model of RmTBI to investigate changes in diffusion MRI and TL, and how these changes relate to each other. Adolescent male and female rats received either three mTBIs or three sham injuries. The first injury was given on postnatal day 30 (P30), with the repeated injuries separated by four days each. Seven days after the final injury, a sample of ear tissue was collected for TL analysis. Rats were then euthanized and whole brains were collected and fixated for MRI analyses that included diffusion and high-resolution structural sequences. Compared to the sham-injured group, RmTBI rats had significantly shorter TL at seven days post-injury. Analysis of advanced DWI measures found that RmTBI rats had abnormalities in the corpus callosum and cortex at seven days post-injury. Notably, many of the DWI changes were correlated with TL. These findings demonstrate that TL and DWI measurements are changed by RmTBI and may represent clinically applicable biomarkers for this.
dc.languageEnglish
dc.publisherELSEVIER SCI LTD
dc.titleTelomere length and advanced diffusion MRI as biomarkers for repetitive mild traumatic brain injury in adolescent rats
dc.typeJournal Article
dc.identifier.doi10.1016/j.nicl.2018.01.033
melbourne.affiliation.departmentMedicine and Radiology
melbourne.source.titleNeuroImage: Clinical
melbourne.source.volume18
melbourne.source.pages315-324
dc.rights.licenseCC BY-NC-ND
melbourne.elementsid1306156
melbourne.contributor.authorO'Brien, Terence
melbourne.contributor.authorShultz, Sandy
melbourne.contributor.authorWright, David
dc.identifier.eissn2213-1582
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record