University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Veterinary and Agricultural Sciences
  • Agriculture and Food Systems
  • Agriculture and Food Systems - Research Publications
  • View Item
  • Minerva Access
  • Veterinary and Agricultural Sciences
  • Agriculture and Food Systems
  • Agriculture and Food Systems - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    A multi-trait Bayesian method for mapping QTL and genomic prediction

    Thumbnail
    Download
    Published version (1.548Mb)

    Citations
    Scopus
    Web of Science
    Altmetric
    7
    7
    Author
    Kemper, KE; Bowman, PJ; Hayes, BJ; Visscher, PM; Goddard, ME
    Date
    2018-03-24
    Source Title
    Genetics Selection Evolution
    Publisher
    BIOMED CENTRAL LTD
    University of Melbourne Author/s
    Goddard, Michael
    Affiliation
    Agriculture and Food Systems
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Kemper, K. E., Bowman, P. J., Hayes, B. J., Visscher, P. M. & Goddard, M. E. (2018). A multi-trait Bayesian method for mapping QTL and genomic prediction. GENETICS SELECTION EVOLUTION, 50 (1), https://doi.org/10.1186/s12711-018-0377-y.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/253508
    DOI
    10.1186/s12711-018-0377-y
    ARC Grant code
    ARC/DP1093502
    Abstract
    BACKGROUND: Genomic prediction and quantitative trait loci (QTL) mapping typically analyze one trait at a time but this may ignore the possibility that one polymorphism affects multiple traits. The aim of this study was to develop a multivariate Bayesian approach that could be used for simultaneously elucidating genetic architecture, QTL mapping, and genomic prediction. Our approach uses information from multiple traits to divide markers into 'unassociated' (no association with any trait) and 'associated' (associated with one or more traits). The effect of associated markers is estimated independently for each trait to avoid the assumption that QTL effects follow a multi-variate normal distribution. RESULTS: Using simulated data, our multivariate method (BayesMV) detected a larger number of true QTL (with a posterior probability > 0.9) and increased the accuracy of genomic prediction compared to an equivalent univariate method (BayesR). With real data, accuracies of genomic prediction in validation sets for milk yield traits with high-density genotypes were approximately equal to those from equivalent single-trait methods. BayesMV tended to select a similar number of single nucleotide polymorphisms (SNPs) per trait for genomic prediction compared to BayesR (i.e. those with non-zero effects), but BayesR selected different sets of SNPs for each trait, whereas BayesMV selected a common set of SNPs across traits. Despite these two dramatically different estimates of genetic architecture (i.e. different SNPs affecting each trait vs. pleiotropic SNPs), both models indicated that 3000 to 4000 SNPs are associated with a trait. The BayesMV approach may be advantageous when the aim is to develop a low-density SNP chip that works well for a number of traits. SNPs for milk yield traits identified by BayesMV and BayesR were also found to be associated with detailed milk composition. CONCLUSIONS: The BayesMV method simultaneously estimates the proportion of SNPs that are associated with a combination of traits. When applied to milk production traits, most of the identified SNPs were associated with all three traits (milk, fat and protein yield). BayesMV aims at exploiting pleiotropic QTL and selects a small number of SNPs that could be used to predict multiple traits.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45770]
    • Agriculture and Food Systems - Research Publications [542]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors