University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Melbourne Medical School
  • Physiology
  • Physiology - Research Publications
  • View Item
  • Minerva Access
  • Medicine, Dentistry & Health Sciences
  • Melbourne Medical School
  • Physiology
  • Physiology - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparative analysis of microRNA expression in mouse and human brown adipose tissue

    Thumbnail
    Download
    Published version (1.548Mb)

    Citations
    Scopus
    Web of Science
    Altmetric
    16
    14
    Author
    Gueller, I; McNaughton, S; Crowley, T; Gilsanz, V; Kajimura, S; Watt, M; Russell, AP
    Date
    2015-10-19
    Source Title
    BMC Genomics
    Publisher
    BMC
    University of Melbourne Author/s
    Watt, Matthew
    Affiliation
    Physiology
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Gueller, I., McNaughton, S., Crowley, T., Gilsanz, V., Kajimura, S., Watt, M. & Russell, A. P. (2015). Comparative analysis of microRNA expression in mouse and human brown adipose tissue. BMC GENOMICS, 16 (1), https://doi.org/10.1186/s12864-015-2045-8.
    Access Status
    Open Access
    URI
    http://hdl.handle.net/11343/253588
    DOI
    10.1186/s12864-015-2045-8
    Abstract
    BACKGROUND: In small mammals brown adipose tissue (BAT) plays a predominant role in regulating energy expenditure (EE) via adaptive thermogenesis. New-born babies require BAT to control their body temperature, however its relevance in adults has been questioned. Active BAT has recently been observed in adult humans, albeit in much lower relative quantities than small mammals. Comparing and contrasting the molecular mechanisms controlling BAT growth and development in mice and humans will increase our understanding or how human BAT is developed and may identify potential therapeutic targets to increase EE. MicroRNAs are molecular mechanisms involved in mouse BAT development however, little is known about the miRNA profile in human BAT. The aims of this study were to establish a mouse BAT-enriched miRNA profile and compare this with miRNAs measured in human BAT. To achieve this we firstly established a mouse BAT enriched-miRNA profile by comparing miRNAs expressed in mouse BAT, white adipose tissue and skeletal muscle. Following this the BAT-enriched miRNAs predicted to target genes potentially involved in growth and development were identified. METHODS: MiRNA levels were measured using PCR-based miRNA arrays. Results were analysed using ExpressionSuite software with the global mean expression value of all expressed miRNAs in a givensample used as the normalisation factor. Bio-informatic analyses was used to predict gene targets followed by Ingenuity Pathway Analysis. RESULTS: We identified 35 mouse BAT-enriched miRNAs that were predicted to target genes potentially involved in growth and development. We also identified 145 miRNAs expressed in both mouse and human BAT, of which 25 were enriched in mouse BAT. Of these 25 miRNAs, miR-20a was predicted to target MYF5 and PPARγ, two important genes involved in brown adipogenesis, as well as BMP2 and BMPR2, genes involved in white adipogenesis. For the first time, 69 miRNAs were identified in human BAT but absent in mouse BAT, and 181 miRNAs were expressed in mouse but not in human BAT. CONCLUSION: The present study has identified a small sub-set of miRNAs common to both mouse and human BAT. From this sub-set bioinformatics analysis suggested a potential role of miR-20a in the control of cell fate and this warrants further investigation. The large number of miRNAs found only in mouse BAT or only in human BAT highlights the differing molecular profile between species that is likely to influence the functional role of BAT across species. Nevertheless the BAT-enriched miRNA profiles established in the present study suggest targets to investigate in the control BAT development and EE.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45770]
    • Physiology - Research Publications [361]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors