Show simple item record

dc.contributor.authorGalvez, S
dc.contributor.authorMerida-Garcia, R
dc.contributor.authorCamino, C
dc.contributor.authorBorrill, P
dc.contributor.authorAbrouk, M
dc.contributor.authorRamirez-Gonzalez, RH
dc.contributor.authorBiyiklioglu, S
dc.contributor.authorAmil-Ruiz, F
dc.contributor.authorDorado, G
dc.contributor.authorBudak, H
dc.contributor.authorGonzalez-Dugo, V
dc.contributor.authorZarco-Tejada, PJ
dc.contributor.authorAppels, R
dc.contributor.authorUauy, C
dc.contributor.authorHernandez, P
dc.date.accessioned2020-12-10T01:37:27Z
dc.date.available2020-12-10T01:37:27Z
dc.date.issued2019-03-01
dc.identifierpii: 10.1007/s10142-018-0639-3
dc.identifier.citationGalvez, S., Merida-Garcia, R., Camino, C., Borrill, P., Abrouk, M., Ramirez-Gonzalez, R. H., Biyiklioglu, S., Amil-Ruiz, F., Dorado, G., Budak, H., Gonzalez-Dugo, V., Zarco-Tejada, P. J., Appels, R., Uauy, C. & Hernandez, P. (2019). Hotspots in the genomic architecture of field drought responses in wheat as breeding targets. FUNCTIONAL & INTEGRATIVE GENOMICS, 19 (2), pp.295-309. https://doi.org/10.1007/s10142-018-0639-3.
dc.identifier.issn1438-793X
dc.identifier.urihttp://hdl.handle.net/11343/253746
dc.description.abstractWheat can adapt to most agricultural conditions across temperate regions. This success is the result of phenotypic plasticity conferred by a large and complex genome composed of three homoeologous genomes (A, B, and D). Although drought is a major cause of yield and quality loss in wheat, the adaptive mechanisms and gene networks underlying drought responses in the field remain largely unknown. Here, we addressed this by utilizing an interdisciplinary approach involving field water status phenotyping, sampling, and gene expression analyses. Overall, changes at the transcriptional level were reflected in plant spectral traits amenable to field-level physiological measurements, although changes in photosynthesis-related pathways were found likely to be under more complex post-transcriptional control. Examining homoeologous genes with a 1:1:1 relationship across the A, B, and D genomes (triads), we revealed a complex genomic architecture for drought responses under field conditions, involving gene homoeolog specialization, multiple gene clusters, gene families, miRNAs, and transcription factors coordinating these responses. Our results provide a new focus for genomics-assisted breeding of drought-tolerant wheat cultivars.
dc.languageEnglish
dc.publisherSPRINGER HEIDELBERG
dc.titleHotspots in the genomic architecture of field drought responses in wheat as breeding targets
dc.typeJournal Article
dc.identifier.doi10.1007/s10142-018-0639-3
melbourne.affiliation.departmentSchool of BioSciences
melbourne.affiliation.departmentAgriculture and Food Systems
melbourne.source.titleFunctional and Integrative Genomics
melbourne.source.volume19
melbourne.source.issue2
melbourne.source.pages295-309
dc.rights.licenseCC BY
melbourne.elementsid1366476
melbourne.contributor.authorZarco-Tejada, Pablo
melbourne.contributor.authorAppels, Rudi
dc.identifier.eissn1438-7948
melbourne.accessrightsOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record