University Library
  • Login
A gateway to Melbourne's research publications
Minerva Access is the University's Institutional Repository. It aims to collect, preserve, and showcase the intellectual output of staff and students of the University of Melbourne for a global audience.
View Item 
  • Minerva Access
  • Science
  • School of BioSciences
  • School of BioSciences - Research Publications
  • View Item
  • Minerva Access
  • Science
  • School of BioSciences
  • School of BioSciences - Research Publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

    Reproductive phenology across the lunar cycle: parental decisions, offspring responses, and consequences for reef fish

    Thumbnail
    Citations
    Scopus
    Web of Science
    Altmetric
    1
    1
    Author
    Shima, JS; Osenberg, CW; Alonzo, SH; Noonburg, EG; Mitterwallner, P; Swearer, SE
    Date
    2020-05-21
    Source Title
    Ecology
    Publisher
    WILEY
    University of Melbourne Author/s
    Swearer, Stephen
    Affiliation
    School of BioSciences
    Metadata
    Show full item record
    Document Type
    Journal Article
    Citations
    Shima, J. S., Osenberg, C. W., Alonzo, S. H., Noonburg, E. G., Mitterwallner, P. & Swearer, S. E. (2020). Reproductive phenology across the lunar cycle: parental decisions, offspring responses, and consequences for reef fish. ECOLOGY, 101 (8), https://doi.org/10.1002/ecy.3086.
    Access Status
    Access this item via the Open Access location
    URI
    http://hdl.handle.net/11343/254079
    DOI
    10.1002/ecy.3086
    Open Access URL
    https://figshare.com/articles/journal_contribution/Reproductive_phenology_across_the_lunar_cycle_parental_decisions_offspring_responses_and_consequences_for_reef_fish/13012961/files/24805190.pdf
    Abstract
    Most organisms reproduce in a dynamic environment, and life-history theory predicts that this can favor the evolution of strategies that capitalize on good times and avoid bad times. When offspring experience these environmental changes, fitness can depend strongly upon environmental conditions at birth and at later life stages. Consequently, fitness will be influenced by the reproductive decisions of parents (i.e., birth date effects) and developmental decisions (e.g., adaptive plasticity) of their offspring. We explored the consequences of these decisions using a highly iteroparous coral reef fish (the sixbar wrasse, Thalassoma hardwicke) and in a system where both parental and offspring environments vary with the lunar cycle. We tested the hypotheses that (1) reproductive patterns and offspring survival vary across the lunar cycle and (2) offspring exhibit adaptive plasticity in development time. We evaluated temporal variation in egg production from February to June 2017, and corresponding larval developmental histories (inferred from otolith microstructure) of successful settlers and surviving juveniles that were spawned during that same period. We documented lunar-cyclic variation in egg production (most eggs were spawned at the new moon). This pattern was at odds with the distribution of birth dates of settlers and surviving juveniles-most individuals that successfully survived to settlement and older stages were born during the full moon. Consequently, the probability of survival across the larval stage was greatest for offspring born close to the full moon, when egg production was at its lowest. Offspring also exhibited plasticity in developmental duration, adjusting their age at settlement to settle during darker portions of the lunar cycle than expected given their birth date. Offspring born near the new moon tended to be older and larger at settlement, and these traits conveyed a strong fitness advantage (i.e., a carryover effect) through to adulthood. We speculate that these effects (1) are shaped by a dynamic landscape of risk and reward determined by moonlight, which differentially influences adults and offspring, and (2) can explain the evolution of extreme iteroparity in sixbars.

    Export Reference in RIS Format     

    Endnote

    • Click on "Export Reference in RIS Format" and choose "open with... Endnote".

    Refworks

    • Click on "Export Reference in RIS Format". Login to Refworks, go to References => Import References


    Collections
    • Minerva Elements Records [45770]
    • School of BioSciences - Research Publications [1092]
    Minerva AccessDepositing Your Work (for University of Melbourne Staff and Students)NewsFAQs

    BrowseCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects
    My AccountLoginRegister
    StatisticsMost Popular ItemsStatistics by CountryMost Popular Authors